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The Distribution of Target Registration Error in
Rigid-Body Point-Based Registration

J. Michael Fitzpatrick* and Jay B. West

Abstract—Guidance systems designed for neurosurgery, hip sion tomography volume, or, in the case of image-guided neuro-
surgery, spine surgery and for approaches to other anatomy thatis surgical applications, an image volume and the physical space
relatively rigid can use rigid-body transformations to accomplish ot the gperating room itself. The rigid-body, point-based image
image registration. These systems often rely on point-based regis- =~ . trati bl is tvpicallv defined t ,b th bl f
tration to determine the transformation and many such systems r_eg|§ ration pro em IS typically de Ine_ 0 e. € problem o
use attached fiducial markers to establish accurate fiducial points finding the translation vector and rotation matrix that produces
for the registration, the points being established by some fiducial the least-squares fit of the corresponding fiducial points. The
localization process. Accuracy is important to these systems, appropriate translation vector is simply the mean displacement
as is knowledge of the level of that accuracy. An advantage of panveen the two point sets. The problem of determining the rota-

marker-based systems, particularly those in which the markers ti tri b i d d to the “Orth P ¢
are bone-implanted, is that registration error depends only on the lon matrix can be easily reduced to the “Urthogonal Frocrustes

fiducial localization and is, thus, to a large extent independent of Problem” [8],[9]. Peter Schonemann published the first solution
the particular object being registered. Thus, it should be possible to that problem in 1966 [9]. His solution was rediscovered inde-
to predict the clinical accuracy of marker-based systems on the pendently in 1983 by Golub and van Loan [10] and againin 1987
basis of experimental measurements made with phantoms or by Arun et al. [11]. These latter solutions, unlike the former,
previous patients. For most registration tasks, the most important : o

error measure is target registration error (TRE), which is the employ the methOd of singular Va|U§ decomp05|t|9n (SVD), but
distance after registration between corresponding points not used they can easily be shown to be equivalent to Schénemann’s so-
in calculating the registration transform. In this paper, we derive lution [12].

an approximation to the distribution of TRE; this is an extension The solution is unique, but can be expected to yield an imper-

of previous work that gave the expected squared value of TRE. : PR ; : ;
We show the distribution of the squared magnitude of TRE and fect registration in the presence of errors in locating the points.

that of the component of TRE in an arbitrary direction. Using Maureret QI. [7], [13] suggested t_hree useful measgres of error
numerical simulations, we show that our theoretical results are a for analyzing the accuracy of point-based registration methods
close match to the simulated ones. (see Fig. 1).

Index Terms—Accuracy, error distribution, point-based, target 1) Fiducial localization error(FLE), which is the error in
registration error. locating the fiducial points.
2) Fiducial registration error (FRE), which is the root-
l. INTRODUCTION mean- square distance between corresponding fiducial
points after registration.

fh | L find ‘ 3) Target registration erro( TRE), which is the distance be-
. seto homologous pqmts n two spaces, Iin atransforma- =\ een corresponding points other than the fiducial points
tion that brings the points into approximate alignment. In many after registration

cases, the appropriate transformations are rigid, consisting Otl'he term “target” is used to suggest that the points are directly
translations and rotations. Medical applications abound in neuy-

rosurgery, for example, where the head can be treated as a r%jﬁociated with the reason for the registration. In medical appli-
body [1]-[7]. The points, which we will calfiducial points, ons, they are typically points within, or on the boundary of,

: ... _lesions to be resected during surgery or regions of functional ac-
may be anatomical landmarks or may be produced arnﬁualh g surgery 9

Nity to be examined for diagnostic purposes.
by means of attached markers. In the case that we address her; 9 purp

the spaces are three-dimensional (3-D) and may consist, for ex:
ample, of two magnetic resonance (MR) volumes, a computrf.é
tomography volume and an MR volume or PETpositron emig—i

HE point-based registration problem is as follows: given a

uch work has been done [2], [3], [7], [13]-[17] using nu-
rical simulations to investigate the properties of FRE and
E. Unknown to many of those performing these simulations,
bson [18] gave in 1979 an approximation to the distribution
of FRE. In 1998, Fitzpatriclet al. derived an equation which
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Fig. 1. Various types of registration error. The FLE measured at each fiducial is the distance between the true position (solid circles) andetheoseasur
(dashed circles) of the fiducial. The FRE measured at each fiducial is the distance between the measured position of a fiducial in one spaceexpditsrcoun
the other space (dashed circle and dashed square), after registration. The TRE, measuredmteginiatto some given origin, is the distance after registration
between the anatomical location (filled square) representadibpne space and the corresponding anatomical point in the other space (filled circle).

direction, expressions that are of crucial importance in applicBhe solution that Schénemann found for theo minimize G
tions for which accuracy in a specific direction is critical. and rms (FRE) is

The expected squared value of TRE that we presented previ-
ously gives an estimate of the average error, but with the exten- R — BA! @)
sion of our theory to the calculation of distribution of error, we
allow an appreciation of how large the extremal values may Bgnere AD B is the SVD of 7t X andY = Y — 1 tt. Thus
e.g., we give an answer to the questidthoiv large might the
TRE be, say, once in every 20 timés?

Il. THE MODEL VtX — ADB! ©)
We make a simplifying assumption in this work: that the FLE

in one space is identically zero. This assumption does not gevhiereA, D, andB are K x K, A andB are orthogonalD is
erally hold in real registration problems, but the derivation majiagonal, and the elements bfare nonnegative. This solution,
easily be extended to the case in which FLE is nonzero in boshich we will call the “SVD” solution, was an improvement
spaces. Using the result derived in 1985 by Langron and Collioger a solution published in 1952 by Green [23] that was based
[22], we can solve this two-space FLE problem by simply reen the concept of the square root of a symmetric matrix and
placing the variance of FLE in our one-space model with tlrequired that{*Y" be nonsingular, a restriction not required for
sum of the variances of FLE in each space. Hence, usjitg the SVD solution.

denote expected value, we repldB&E?) 4+ (FLE3) by (FLE?), In this paper, we assume that is related toY” by a rigid-
where FLE and FLE are the FLEs in the two spaces, respedody transformation representing a reorientation of the rigid
tively. body to which the points are attached and\aby-K matrix £

Here and for the remainder of the paper, we denote tbéperturbations representing the FLE. We assume that the ele-
number of fiducial points byv and the dimension of the spacements ofF" are independent, zero-mean normal variables with
containing the points by<. The value of is typically three equal variance, i.e., that the elements are indepentéato)
in medical imaging applications. In general, we may wiide variables. Thus, FLE has the same distribution at each fiducial
as theN-by K matrix whose rows correspond to the positiopoint and in each of the coordinate directions at every point.
vectors of the fiducial points in one space ands theV-by-K It should be noted that, because it is equal to the sum of the
matrix representing the fiducials in the other space. The regsgiuares of’ independent, identically distributed normal vari-
tration problem is to find & -by-K orthogonal matrix® and ables, FLE is chi-square distributed. Furthermore, the compo-
a K-by-1 translation vectort, so that the pointdix; +t are nent of localization error along any arbitrary direction is nor-
in optimal alignment with the corresponding pointsin Y, mally distributed. The above assumption about the distribution
wherex; andy; are K-by-1 vectors and = 1,..., N. (Note of elements ofF’ allows the use of a closed-form solution for
that in this paper we use a nonbold font for scalars and matrithse registration problem itself and as pointed out by Sibson [18],
and a bold font for vectors. All vectors are column vectonsermits us to neglect the rigid body transformation relatlag
unless adorned with a superscripto indicate transposition. andY’, as FRE and TRE are independent of this reorientation.
Components of matrices and vectors, because they are scalksnote that, under these assumptions, the variance of each el-
are in a nonbold font.) By “optimal alignment,” we mean thagément ofF" is equal to(FLE?) /K.
rms (FRE) is minimized, i.e R andt are chosen to minimize  We, thus, simplify the problem to that of registerifg to

Y = X + F. As the choice of origin forX is arbitrary, we
G=tr((Y - XR—15t)'(Y — XR—1xt")). (1) choose the centroid of to be the origin.
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[Il. DERIVATION OF THE DISTRIBUTION like that of FRE?, depends only on errors in localizing the fidu-
cials, as opposed to gross motion between the two spaces. Also
following Sibson, we will continue to treat the case in which the
localization error is negligible in theX” space. With these two
assumptions we may use (6) The following expression results:

We may adjust théV-by-K matrix, X of fiducial positions
by choosing the origin of coordinates so thatis centered,
meaning that

t —
Xty =0. (4) TRE(r) = Rr+t —r (11)

We may write the Singular Value Decompositionfas where theTRE (in bold font) is the displacement vector, as op-

X = UAVY, (5) posed to the magnitude, of TRE. We should note that translation
is first order ine¢, as can be seen from (7). Expanding the rota-
where tion matrix ine and noting that? = I whene = 0, we have
U  N-by-N orthogonal matrix; R—1 =eRM 4 0(e?). Hence, to first order in we may write

A N-by-K diagonal matrix;
V' K-by-K orthogonal matrix.
The value ofV” depends on our choice of orientation of cOOfy e now wish to deriverL) . We begin by imposing the orthog-
dinate axes. As with the choice of origin, the choice of axes (5?1a|ity requirement ok
also arbitrary. We choose the orientation so tHat I, the
K-by-K identity matrix. This choice implies that the coordi- gptp — 7 — (I +erRWt 40 (62)) (_7 +eRM 10 (62))
nate axes coincide with the principal axesXf We now make

TRE(r) = RYr +t. (12)

explicit the relationship of this registration problem to perturba- =I+e¢ (R(l)l + R(l)) +0 (62) .
tion theory: We write the fiducial set to which is to be regis-
tered as Therefore R(") is antisymmetric
Y =X +¢F (6) RW* = _ R, (13)

wheree is a positive dimensionless constant whose value will We note from(2) and (3) that for the optim&), Y*XR =

be taken to be small enough to allow us to ignore higher ordd) A*, from which we see that

terms ine as they arise in the derivations below. ~y s
VIXR=R'X'Y. (14)

A. Choice of Translation (Note that we will make no other use of the SVD solution. In

Itis well known that the translation componetitof the reg-  fact, in Schénemann’s derivation, this symmetry is established

istration that minimizes (1) for anf is simply the translation before decomposition is employed. Thus, we do not need to

that aligns the centroids of the two fiducial sets, i.e., know the complete solution in order to derive the first order
: approximation.) We use (6), far, but in order to account for
. €1 F . . .
t = N (7) translation, we must use demeaned versions ahdY . As dis-
cussed before (4), we have demeately our choice of origin.
We write / as the demeaned version Bf i.e., We demeaned’ in (9), where we found that
. F— 1514 F Y =X +el. 15
F= # (8) +e (15)

Writing (8) in component form gives
Then with (1) and (7) we find that

N

) ) A 1

V=Y —1nth = X +F. 9) Foj=Foj— 3= > _ B (16)
b=1

wherel < a < N is used to label fiducial points and< j <

K is used to label coordinate axes. We now use (15), the expan-

Using (9) in (1), we see that the rotation component of thg,, of B and (13), in (14). The result is a series of equations
optimal registration is the orthogonal matdik that optimally 5, each power of. The linear terms yield

registers the points ik’ to the corresponding points i + o
eF'. We do not attempt to derive the exact form of this rotation XtXRW 4 ROXIX = XtF — F'X. (17)
matrix; instead, we express it as a power series in

B. Choice of Rotation

We wish to solve this equation fa&(Y). The solution is made
R =R 4 RY 4 O(?) (10) difficult by the fact thatRY) occurs multiplied on both the right
and left. Following Goodall [24], we perform SVD o to
getX = UAV?, whereU andV are orthogonal and is di-
agonal. Our assumption that the elementd’adire identically
Our goal is to find an approximate expression for the distribulistributed [see after (6)] assures isotropy in the perturbations.
tion of TRE(). Following Sibson, we note that this distribution,Thus, we can without loss of generality orient our coordinate

C. Expression for TRE
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system in any direction we choose. We pick the orientation @iven thatv is constrained to be orthogonalitpthis simplifies
be along the principal axes of the distribution of fiducial pointgp
which means that’ = I. Thus, we have
TRE,(r) = —r(v - Q)+t - (£ x ¥) (26)
X =UA. (18)

wherer is the magnitude of the vectar In this way, we may
[Note: Neither this reorientation nor the special positioning afrite
the origin above is necessary to effect a solution to (17), nor for

any part of the derivation that follows. However, they do reduce TRE(r) = TREf + TRE, Vv + TRE, W 27)
the complexity considerably and they can be easily undone at )
the end.] Employing (18) enables us to solve (17) and we wish to choose so that
1y NaQiy — A Qi b=
jo) _ W (19) r-v=20 (28)

which is the result given by Goodall in 1991 [24] and similarl;‘/"mOI

to Goodall we have defined
(TRE.TRE,) = (TRE.TRE,,) = (TRE,TRE,) = 0. (29)
Q=U'F. (20)
_ _ 2) Translational and Rotational Cross Correlationsn
Because of the antisymmetry 81, we may rewrite (12) as  order to derivev, we first need expressions f¢;t,), (2:t,)

and(€2;€2;). From (7) we have that
TRE(r) = Q2 xr+t (21)

where 18

] b= 2 e (30)

a= [rY - BYRY) @) =
We know that
in the case that the spatial dimensifhis equal to three. For
the rest of this derivation, we will consider only the c&Se= 3. 1 N N
(We have previously derived [20] an expression for the expected (tit;) = N2 <Z Z Fainj> (31)
value of TRE(r) that holds for generak’.) a=1b=1
1) Resolution Into Independent Componenise wish to re- _ .
solveTRE(r) into components along three orthogonal vector‘ghICh may be written as
in such a way that each of these three components of TRE is N
independent of the others. This task is made easier by taking 1 <ZF F > (32)
. . . . art ay
advantage of two facts: 1) A linear combination of normal vari- N2 —
ables is itself a normal variable and 2) if twd(0, o) variables
are uncorrelated, then they must be independent [25]. With @#cause distinct elements Bfare independent. Recalling that
neglect of higher order terms, any componeniBE is neces- each element of is defined to be a zero-mean, normally dis-
sarily a linear combination of the normally distributed elementgibuted random variable with varianeg, we have that
of F'. Because the elements 8fhave zero mean, the compo-
nents ofTRE have zero mean. Thus, our problem is reduced to 2
resolvingTRE into components that are uncorrelated. (tit;) = N(S“ (33)
We choose the first of these components to be a vector in the

directiont, the unit vector in the radial direction and the secondhereé is the Kronecker delta function defined &s = 1 and
to be in the direction of a unit vectar, that is perpendicular ¢i; = 0 forz # j.

to #. The third vector in this set must, thus, e = & x v. From (19) and (22) we have that
We denote the components of TRE in these three directions as
TRE,, TRE,, and TRE,, respectively. We know that QO = M (34)
! A+ AL
TRE(r)=(2xr+t) -t =t 1. (23)

o where{j, &, 1} = {1,2,3},{2,3,1}, or {3, 1, 2}. Using (20) to

Similarly, we have that expand the elements 6f, we have that
TRE,(r)=(Qxr+t) - v=(2xr) - v+t-v 24 r r ~ S
(r) = ( ) (€ xr) (24) = L zf\: . S (AracUsi Byt — AUpi Fo)
and TN A= Afy +AG
P . (35)
TRE(r) =(2 xr+t)-(Fx V) Using (16) to expand’ in terms of F', we have (36) shown at

=((r-¥)r—(r-r)v)- 2+t (rx¥). (25) the bottom of the next page. Using independence of distinct el-
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ements ofF, this may be simplified to (37) shown at the bottonBecauseX = UJA, we also have that

of the page. Clearly
N N

N N
NN NN N SN MabeclUiaUse =33 Xia X
U, 6(1 6acU i=1 j=1 =1 j=1
HIULIEED MW IR :

a=1 b=1 a=1 —1 N
. £
= Z U= 5 3D Un=0.  (39) = =

=0. (41)

a=1b=1

From this we may deduce that the expected product of gamyd 1 NiS gives us the result that
(1, is zero,i.e, they are uncorrelated. Finally, we have products
of the form(£2,£2;). Any such product may be expressed as (AaaQabAeeQed) = 07 8acbya. (42)

Ao Qar — Ay Qe AeeQoa — AeoQue Using this result in (39) gives the equation shown at the bottom
<< A2, + A2 ) < A2+ A2, >> - (39 of the next page. Clearly this is only nonzero wheg- ¢ and

b = d, or whenb = canda = d. From the definition of2 in
e . (22), we can see that this happens if and only # j. Thus,
From the definition off’, we have that (2,Q;) = 0 fori # j. We denoteQ?) asw?.
3) Choice of Direction forv: Having proved that the ex-
A 1 & 1 pected values of the products of componentaindt are all
<Fachd> ={ | o — N EF“’ Fea — N EFM zero, we return to our derivation éf. We wish to ensure that

the component of TRE along each of our set of vectors is un-

—0? [ 8,.60q — iébd _ iébd 1 iébd correlated with the others. It happens that the radial component
ac N N N TRE, is uncorrelated with TREand TRE, as a consequence
1 of orthogonality. For example
=0 6bd 6ac - N
(TRETRE,) ={((t - #) (@ xr) - v+t -¥)) = {(t-v)(t - T))
from which we may deduce that
<ZZttUZ >—rf€f r=20
N N t=1 j=1
aa'Ya Acc 2 AaaA cUiaU'cE ﬁ .

WoaQusAeeea) <;; sen Jd> where we have used uncorrelation of elementsofnd t.

NN Thus, our choice of is determined by the condition that
_, 6bdZZAa(JA(’(’[]mUJ(’ <5u 3 N) . (TRE, TRE,,) be equal to zero. We have that

=1 j=1

(TRE,TRE) = {((x1r) v4+t-v)(—rQ-v)+(t- (T x ¥)))

(43)
but recalling that the elements tfand €2 are uncorrelated, as
are distinct elements df, this reduces to

By orthogonality ofl/, we know that

N

Z Uvia[]ic = UTUac = 6ac- (40)

o1 (TRE,TRE,) = (—r((2 x r) - ¥)(©2 - ¥)). (44)

zr: " Zi\;l (AkkUbk (Fbl - % Zi\;l Fcl) - AllUvbl (Fbk - % Zi\;l FCk)) (36)
N “ Afx + AR
o2 zj\: Elj,\zl AU (6(1!;611 ~ E(J,\zl 6ac6il) — AUy (6ab6ik -+ E(J,\zl 6ac6ik) &7)
N —~ A, + A
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Because the left-hand side of the above equation is to be set tdVe now address the general case in which no component of
zero, the equation may be multiplied throughout by a constantis zero and all the/? are distinct. From (48), we have that
Instead of findingv, we first find a vectow of arbitrary length

in the same direction a&. We write the three componentsof YU, = —2U, — T (51)

asz, y, andz, the corresponding componentswas vy, vy,

andv. and those of? asf2.., {2, andf2.. We require that and multiplying (47) by, and using the above substitution gives

(@ xx)- )@ v) =0 45) s, + 202) (02 =) o (o =)

22y _
Expanding this in the componentsof 2, andr gives +avz 2y + 202) (wy —wZ) = 0. (52)
(7 — e + (o — Qo) Rearranging in powers af,,, this may be rewritten as

O = Qo) Qe+ Qg+ Q) S0 @8) e a2 (2 )
T Y T vz ~ T Y

Recalling that€2;Q;) = w?é;;, (46) reduces to + (2% +47) (wy —wZ)) (83)
xz (wg — wf) v? =0. (54)
ZUzVy (wg — wi) +yv,v, (wi — wg)—i—xvyvz (wf — wz) =0.
(47) We may choose to solve for eithey or v.; we choose to solve

The other equation that must be satisfiedvbig for v, and we wish to check whether (54) always has real roots.
Writing the equation aglv? + Buv,, + C = 0, the condition for
VI =2, +yu, + 2v. = 0. (48) real roots is thaf3? > 4AC. In this case, we have that

. . . . 2
We first treat the special case in which at least one componen? — 2 ((y2 + 22) (wi — wi) + (a;2 + y2) (w§ — wf))

of r is equal to zero. We assume, without loss of generality, that (55)
z = 0. Then (47) and (48) reduce to and
ZUzUy (“{5 - wi) T YUV (wi - wf) =0 (49) 44C =4z 2%0? (wf, — wg wg — wf)

2
and IU,Z (22 (wi — wi + y2 (w2 — wf) + z? (w,2 — wf)) .
Yuy + 20, =0 (50) If 4AC < 0, clearlyB? > 4AC and the roots are real. Other-

. o i _ wise, we know that
respectively. There are two ways of satisfying the first equation:

by settingu, = 0 or by settings, = v. = 0. As this equation is
quadratic inv,, vy, andu., these must be the only two solutions. 5 5 g y ) y
If we choose to set,, = 0, there is a line of possible solutions =B" —v; ((?J +27) (wm - wy)

for v, andv.. We may choose any solution from the line; we —(2% +7) (wg _ wg))Q (56)
then normalizev to producev. If we choose to set, = v, =

0, clearlyd,, = 1. We can see by inspection that these solutiops,nce

are orthogonal to each other anditd’ hus, we have proved that

4AC <4vi(2® + )y + %) (w2 — wg) (wg - w?)

they are ther andw that we seek. 2 20002 | 2\ ( 2 2
. B —4AC . 4 —w,
We should also note that if, for any# j, w} = w7, then > (07 429 (v —wy) )
there are two simple solutions to (47). For exampleJit= w2, —(=* +y%) (v —2)) >0 (57)

(47) may be satisfied by setting = 0 or by settingy, = v, =
0. As in the case described above, these two solutions maysoethe roots are real. As is of arbitrary length, we sat, =
easily shown to b& andw. 1 and solve fow,,. Using the quadratic formula, we have (58)

<QQ > == AaaQab _ Abeba Acchd - Addec
B Aga + Agb Agc + A(Qid
_UQ(AaaAcc(sac(sbd - AaaAdd(sad(sbc - AbbAccébcéad + AbbAddébdéac)
B (A2, + A3,

_02(6ac6bd - 6bc6ad)
B A%a + Agb
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shown at the bottom of the page. This gives two possible solnhich may be rewritten as

tions forv,, and for each solution we may derive a corresponding

value foru, from (51). We label these asf, v, andv;, v, 2 2.9  O°

and the vectors formed from them-a3$ andv~. We have en- oy =T Ty (63)
sured that these two possible solutions¥oare orthogonal to

r and that their components of TRE are uncorrelated with ealRd

other. It remains only to show that the two possible valueg of

2
are orthogonal in order to complete the proof that they are the o2 _ 5 . . 2o o2
andw that we seek. We have that = (TRE,) = ; BAGURRC =rest
- (64)
viovT =viuy 4ot + ool Using these expressions for the variance of the components, we
+ + - - have that
—oto 4 (zvt 4 27 )gatvm + 2v7)
Yy 3 2
rotus. (59) (TREX(r)) = (TREZ + TRE? + TRE2) = %—i—rQ(wg—i—wg}).
(65)
Using the fact that}t = v; = 1 and applying to (54) the Becauser, v andw form an orthogonal set of axes, we know
formulae for sums and products of roots of a quadratic equatidhat
this may be rewritten as
y Ww=w 4wl (66)
vt v :(372 +47) (w§ —-w?) and, hence
v (w2 —w)) w2 Wl =w? WP (67)
(y2 + 2,2) (wg _ 0.12) + (.’L’ + Yy ) (UJ _ wg) w r
+ y? (w2 — w2) Thus, we may rewrit€ TRE*(r)) as
2 2 2 2
+ 27) (wy —w,
(y - )2( 5 y) (60) 30_2 ) ) )
y? (w2 - wl) T—i—(a: + 7+ 2%)

. _ 22w} + w3 + 22w}
which can be seen to sum to zero. Thus, the two solutions of X <w12 + Wi +wji — ;2 f 22+ — 3) (68)
(54) lead tov andw. Yy

D. Expected Values which may be further simplified to

We now derive the expected value of the square of the mag- 3452 ) ) o o ) o o
nitude of the total displacemenTRE?) and also that of the 7 T (" + 22)wf + (2% + 2H)wi + (2% +y*)w3.  (69)
square of the componentTGRE in any arbitrary direction. First
we derive the variances?, o2, andoZ,, of each of the compo- We write the distance affrom axisi asd;, (e.q9.,.d1 = y2+22);
nents ofTRE. Because the|r means are zero, the variances\é then have that
these components are equal to their mean squared values. Thus,

from (23) we have that 302 &
(TRE*(r)) = ~ > di?. (70)
3 3 3 o2 =1
of = (TRE}) = tjt; ) = tt; )= —. (61
»=(TR&) <§Jz_:1 ! ’> <Zz_; > v @D Finally, we express? in terms ofo andA. We have that
. 2
Similarly, from (24) and (26) 5 (1) Ay Qi — A Qrj
wis (Rfk) - AZ A2
5 9 Jd kk
2
o, = (TRE}) = <<Z wifl; + tﬂ%) > (62) ——— (71)
=1 A+ A3

202(ws — wivp = (Y + 27)(w) — wi) + (2 + y*)(w? — )
i\/((y +22) (w2 — w2) + (22 +y2) (w2 — w2))’ — 4222 (W2 — W) (W2 — w2) (58)
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For{i,j,k} ={1,2,3},{2,3,1},0r{3,1,2}. ButA3, + A7, is IV. NUMERICAL SIMULATIONS
equal to the sum of squared distances of the fiducial points from
axisi; we will write this quantity asf?. We have, then, that Equation (72) has been shown [20] to be in excellent agree-

ment with numerical simulations. In this paper, we have derived

2 s f 3 > d? (76) and (77), which are distributions, as opposed to merely ex-
<TRE (r)> 7N + Z r2 pected values. In order to test our approximation and verify our
=1 5 derivations, we have performed some additional simulations.
— (FLE?) 1 n 1 Z d; (72) We have chosen (76) for numerical simulation because it in-

N 3 ~ f? cludes contributions from all components of TRE.

First, we chose five values @f for which to perform the test:
which is the 3-D case of the expression we previously derived = 3, 4, 10, 20, 50. For each of these valuesvgfwe gener-
[20] for the expected squared TRE. ated the correct number of fiducial positions randomly with uni-
We now derive the expected squared value of the componérm distribution within a cube of side 200 mm and one target
of TRE in an arbitrary direction. We represent this direction bposition randomly with uniform distribution within a cube of
the unit vectoa. From (27) we can see that the component &fide 400 mm. In order to model the FLE of (6), we perturbed in-
TRE in directiona is dependently the, ¢, andz components of the fiducial positions
in one space, using normally distributed independent random
TRE, = (TRE)d, + (TRE,)d, + (TREy )dyw (73) variables with zero mean and variance 1/3‘m this way, we
produced the same model as that used by Sibson in 1979 [18]
wherea, = a-r,a, = a-vanda, = a-w. We may then and for our previous simulations [20]. We registered the per-
deduce that turbed positions to the original ones, measuring the TRE at the
target position according to (11).
(TRE}) = (TRE}) a? + (TREZY a2 + (TREL)aZ  (74)  One simulation consisted of 100 000 repetitions of the per-
turbation and registration step, allowing us to estimate the dis-
recalling that the fact that the three component§RE are un- tribution of squared TRE. We performed 100 000 iterations of
correlated ensures that the expected product of distinct comgenerating three independent, zero-mean normal variables with
nents is zero. From (61), (63), and (64) we can see that we mayiances as derived in Section IlI-C to represent the three com-
rewrite (74) as ponents of TRE; we squared and added these variables to give
s ) ) Eazg]quared TRE \;alude_. Wte)z u_sed trflehKolm(_)gorlov-imirgov test
2\ _ 40 22 (07 2 2 2 (97 2 2 to compare the distributions of these simulated and gener-
<TRF“> + <N e ) ta <N T w'“) ated values. In the casé = 10, there was a significant differ-
o2 ) ) ence between the two distributions (K-S tgstx 0.05), but
=7 + 17 (awy, + dgwy) (75)  this difference was not significant to < 0.01. In all other
cases, there was no significant difference. In Fig. 2, we show
wherew, andw,, are the components &2 alongv andw, corresponding percentiles of squared TRE for the generated and
respectively. simulated values. The fact that each plot shows a straight line
o alongz = y demonstrates that the distributions of the two types
E. Distributions of values match closely. From the percentile values themselves
We have shown how to decompo®&RE(r) into three or- in these five plots we can also see that, as implied by (72), the
thogonal components that are uncorrelated with each other. Beagnitude of TRE is decreased as more fiducials are added. The
cause they are linear combinations\6{0, o) variables, namely only exception is to this rule is that the TREercentile values
the F;;, these three components are themselves normal varialitesV = 20 are smaller than those f8f = 50. The explanation
with zero mean. Because they are uncorrelated, they are alsdam-this is that the randomly chosen target fér= 50 happens
dependent [25]. to be more than five times further from the fiducials’ centroid
Since the three orthogonal component3 BE are indepen- than is the case faV = 20 and (72) also implies that TRE in-
dent, normally distributed variables with zero mean, ¥RE creases with distance of the target from the fiducials’ centroid.

Q>

distributed as the sum of three chi-square variables In Table I, we compare the predicted variance of each compo-
nent of TRE from (61), (63), and (64) with the observed variance
TRE? ~ o2x1 + 02x7 + 021 (76) of these components of the simulated values. For all the fiducial

configurations studied, the observed values match the predicted
From (73), we know that TRESs the sum of three independentones within 1%. As pointed out in Section |, our derivations take
zero mean, normal variables. Hence, we may deduce that TREEcount of anisotropy in the rotational components of registra-
itself is a zero mean, normal variable and that its variarfcis  tion error. A convenient measure of the anisotropy,jgw,,. In

equal to(TRE?). We write Table I, for the caseV = 3, w,/w,, = 0.83 and for the case
N =4, w,/w, = 0.47 using (63) and (64) to derive this ratio
TRE, ~ N(0,0,) (77) givens? ando?; these two cases demonstrate that our theory

correctly handles significant amounts of anisotropy in these ro-
whereo? is equal to the right-hand side of (75). tational components.
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TABLE | is normal. The normal form is inevitable because 1) in the limit
COLUMNS 2, 3,AND 4 GIVE PREDICTED VARIANCES OF TRE,, TRE, 7 i H
AND TRE.. ACCORDING T0(61). (63),AND (64). COLUMNS 5. 6, AND 7 of zero perturbatlo_n TRE is zero_and 2), we hav_e ignored tgrms
GIVE THE OBSERVED VARIANCES OF THESE TRE COMPONENTSFROM of order two and higher in. TRE, is, therefore, a linear combi-
NUMERICAL SIMULATION . COLUMN 8 GIVES THE MAXIMUM PERCENTAGE nation of the elements df and is, thus, a zero mean, normally
DiscREPANCY BETWEEN CORRESPONDINGPREDICTED AND OBSERVED distributed variable. In (75), we have giveﬁ, the variance of
VALUES FOREACH Row . . . L .
this variable, which completes the derivation.
N Predicted values Observed values Max. % error The close agreement of the predicted valuesot2, ando2,
0.2 o 02 0.2 (72 02 . . . . .
: 7 : » with those given by the numerical simulations shows that our
3 | 0.1111 [ 2.7105 | 1.8970 | 0.1118 | 2.6960 | 1.9070 0.63 first-ord imation i d for the fiducial confi
1 [0.0833 | 1.1608 | 0.3102 | 0.0837 | 1.1564 | 0.3104 0.50 Irst-order approximation IS a good oné for the iducial configu-
10 70.0333 | 0.1766 | 0.1342 | 0.0330 | 0.1767 1 0.1352 0.01 rations we tested. However, when applying this theory to general
20 | 0.0167 | 0.0243 | 0.0221 | 0.0167 | 0.0243 | 0.0220 0.45 configurations, care must be taken to ensure that the conditions
=41 =4 it < . . . . . . .
20 | 0.0067 | 0.0984 | 0.0755 [ 0.0067 | 0.0982 | 0.0753 0.27 are such that this approximation remains valid. This will be the
case as long ag(?, the second order component of the rota-
V. DISCUSSION tion, remains small compared #*. From the orthogonality

, condition on we know that
We have shown that TRE may be separated into three orthog-

onal components and that these components have a zero m;e(a}njr RV L R® 10

3 (1)t (2t 33V) —
normal distribution with variances given by (61), (63), and (64 (ENU+ B+ BEE+0(e) = 1

We have also demonstrated that the components are indepen; equating second order terms iaives that (78)
dent of each other and, hence, we know that the square of Tﬁrgj q 9 9
is distributed as in (76). As expected, the radial component of R® 4 ROt _ g2 (79)

TRE has the smallest variance, as this component contains only
translational error; the other two components contain both rota-
tional and translational error. In addition to the square of TREhUs, we know that the symmetric part of the second order term
we have also derived the distribution of TREhe component is much smaller tha®®) in the case thdtRE})| < 1. From the

of TRE in an arbitrary direction. We find that this distributiordefinition of R(*) in (19), we can see that this will be the case
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our derivations to allow for the anisotropy in FLE that some-
times accompanies anisotropy in the voxel dimensions. This
problem will no doubt prove to be a difficult one, because there
is no known closed-form solution to the rigid-body registration
problem in the case that errors must be weighted differently ac-
cording to their direction [27]. Another problem is that of un-
equal weighting among the fiducials in (1). Unequal weighting
is appropriate when the localization error varies among the fidu-
cials. This situation arises when the fiducials are derived from
landmarks of varying visibility and definition.
While future solutions of the problems of spatial anisotropy
and fiducial weighting may extend the application of this
Fig.'3. The rotational component of_TIRB. To first order, the error is a work to other medical areas, the assumptions that we have
motion orthogonal to the axis of rotatid® and tor, represented byz(*), L. . . .
At second order, there is an additional component corresponding to moveri@i2de for these derivations are already realized quite faithfully
toward the axis of rotation, represented by the symmetric paRi®f. for bone-attached fiducial markers, used in neurosurgery,
orthopedic surgery and radiation oncology. It is hoped that the
if the magnitude of the perturbations fand, thus, the magni- stat_istical distril?utions of the components _of_TRE that we have
1derlved here will allow surgeons and radiation oncologists to

tude of the elements @p, is much smaller than the moment o int-based i ; ; ith fid id
the fiducial configuration about each axis. For a near—collineé?e point-based image registration with more confidence to ai

fiducial configuration, this relationship may not hold. One of th oth diagnosis and treatment.
momentsf; will be small; if this moment is of the same order
of magnitude as the elements Bf representing the FLE, the
approximation we use is no longer valid. In the numerical simu-
lations we performed, none of the configurations is collinear by [1] P. Clarysse, D. Gibon, J. Rousseau, S. Blond, C. Vasseur, and X.
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