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The Distribution of Target Registration Error in
Rigid-Body Point-Based Registration

J. Michael Fitzpatrick* and Jay B. West

Abstract—Guidance systems designed for neurosurgery, hip
surgery, spine surgery and for approaches to other anatomy that is
relatively rigid can use rigid-body transformations to accomplish
image registration. These systems often rely on point-based regis-
tration to determine the transformation and many such systems
use attached fiducial markers to establish accurate fiducial points
for the registration, the points being established by some fiducial
localization process. Accuracy is important to these systems,
as is knowledge of the level of that accuracy. An advantage of
marker-based systems, particularly those in which the markers
are bone-implanted, is that registration error depends only on the
fiducial localization and is, thus, to a large extent independent of
the particular object being registered. Thus, it should be possible
to predict the clinical accuracy of marker-based systems on the
basis of experimental measurements made with phantoms or
previous patients. For most registration tasks, the most important
error measure is target registration error (TRE), which is the
distance after registration between corresponding points not used
in calculating the registration transform. In this paper, we derive
an approximation to the distribution of TRE; this is an extension
of previous work that gave the expected squared value of TRE.
We show the distribution of the squared magnitude of TRE and
that of the component of TRE in an arbitrary direction. Using
numerical simulations, we show that our theoretical results are a
close match to the simulated ones.

Index Terms—Accuracy, error distribution, point-based, target
registration error.

I. INTRODUCTION

T HE point-based registration problem is as follows: given a
set of homologous points in two spaces, find a transforma-

tion that brings the points into approximate alignment. In many
cases, the appropriate transformations are rigid, consisting of
translations and rotations. Medical applications abound in neu-
rosurgery, for example, where the head can be treated as a rigid
body [1]–[7]. The points, which we will callfiducial points,
may be anatomical landmarks or may be produced artificially
by means of attached markers. In the case that we address here,
the spaces are three-dimensional (3-D) and may consist, for ex-
ample, of two magnetic resonance (MR) volumes, a computed
tomography volume and an MR volume or PETpositron emis-
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sion tomography volume, or, in the case of image-guided neuro-
surgical applications, an image volume and the physical space
of the operating room itself. The rigid-body, point-based image
registration problem is typically defined to be the problem of
finding the translation vector and rotation matrix that produces
the least-squares fit of the corresponding fiducial points. The
appropriate translation vector is simply the mean displacement
between the two point sets. The problem of determining the rota-
tion matrix can be easily reduced to the “Orthogonal Procrustes
problem” [8], [9]. Peter Schönemann published the first solution
to that problem in 1966 [9]. His solution was rediscovered inde-
pendently in 1983 by Golub and van Loan [10] and again in 1987
by Arun et al. [11]. These latter solutions, unlike the former,
employ the method of singular value decomposition (SVD), but
they can easily be shown to be equivalent to Schönemann’s so-
lution [12].

The solution is unique, but can be expected to yield an imper-
fect registration in the presence of errors in locating the points.
Maureret al. [7], [13] suggested three useful measures of error
for analyzing the accuracy of point-based registration methods
(see Fig. 1).

1) Fiducial localization error(FLE), which is the error in
locating the fiducial points.

2) Fiducial registration error (FRE), which is the root-
mean- square distance between corresponding fiducial
points after registration.

3) Target registration error(TRE), which is the distance be-
tween corresponding points other than the fiducial points
after registration.

The term “target” is used to suggest that the points are directly
associated with the reason for the registration. In medical appli-
cations, they are typically points within, or on the boundary of,
lesions to be resected during surgery or regions of functional ac-
tivity to be examined for diagnostic purposes.

Much work has been done [2], [3], [7], [13]–[17] using nu-
merical simulations to investigate the properties of FRE and
TRE. Unknown to many of those performing these simulations,
Sibson [18] gave in 1979 an approximation to the distribution
of FRE. In 1998, Fitzpatricket al. derived an equation which
allows calculation of an approximation to the root-mean-square
(rms) value of TRE [19], [20] and agrees with published simu-
lations. In 1999, West and Fitzpatrick presented an expression
for an approximation to thedistribution of TRE, as opposed
to merely an rms value [21]. That approximation ignored an
anisotropy in the distribution of rotational errors. In what fol-
lows, we give an approximation that accounts properly for this
anisotropy and we give for the first time expressions for the dis-
tribution and rms value of a component of TRE in an arbitrary
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Fig. 1. Various types of registration error. The FLE measured at each fiducial is the distance between the true position (solid circles) and the measured position
(dashed circles) of the fiducial. The FRE measured at each fiducial is the distance between the measured position of a fiducial in one space and its counterpart in
the other space (dashed circle and dashed square), after registration. The TRE, measured at a pointr relative to some given origin, is the distance after registration
between the anatomical location (filled square) represented byr in one space and the corresponding anatomical point in the other space (filled circle).

direction, expressions that are of crucial importance in applica-
tions for which accuracy in a specific direction is critical.

The expected squared value of TRE that we presented previ-
ously gives an estimate of the average error, but with the exten-
sion of our theory to the calculation of distribution of error, we
allow an appreciation of how large the extremal values may be,
e.g., we give an answer to the question “How large might the
TRE be, say, once in every 20 times?”.

II. THE MODEL

We make a simplifying assumption in this work: that the FLE
in one space is identically zero. This assumption does not gen-
erally hold in real registration problems, but the derivation may
easily be extended to the case in which FLE is nonzero in both
spaces. Using the result derived in 1985 by Langron and Collins
[22], we can solve this two-space FLE problem by simply re-
placing the variance of FLE in our one-space model with the
sum of the variances of FLE in each space. Hence, usingto
denote expected value, we replaceFLE FLE by FLE ,
where FLE and FLE are the FLEs in the two spaces, respec-
tively.

Here and for the remainder of the paper, we denote the
number of fiducial points by and the dimension of the space
containing the points by . The value of is typically three
in medical imaging applications. In general, we may write
as the -by matrix whose rows correspond to the position
vectors of the fiducial points in one space andas the -by-
matrix representing the fiducials in the other space. The regis-
tration problem is to find a -by- orthogonal matrix, and
a -by-1 translation vector,, so that the points are
in optimal alignment with the corresponding points in ,
where and are -by-1 vectors and . (Note
that in this paper we use a nonbold font for scalars and matrices
and a bold font for vectors. All vectors are column vectors
unless adorned with a superscriptto indicate transposition.
Components of matrices and vectors, because they are scalars,
are in a nonbold font.) By “optimal alignment,” we mean that
rms (FRE) is minimized, i.e., and are chosen to minimize

(1)

The solution that Schönemann found for theto minimize
and rms (FRE) is

(2)

where is the SVD of and . Thus

(3)

where , , and are , and are orthogonal, is
diagonal, and the elements ofare nonnegative. This solution,
which we will call the “SVD” solution, was an improvement
over a solution published in 1952 by Green [23] that was based
on the concept of the square root of a symmetric matrix and
required that be nonsingular, a restriction not required for
the SVD solution.

In this paper, we assume that is related to by a rigid-
body transformation representing a reorientation of the rigid
body to which the points are attached and an-by- matrix
of perturbations representing the FLE. We assume that the ele-
ments of are independent, zero-mean normal variables with
equal variance, i.e., that the elements are independent
variables. Thus, FLE has the same distribution at each fiducial
point and in each of the coordinate directions at every point.
It should be noted that, because it is equal to the sum of the
squares of independent, identically distributed normal vari-
ables, FLE is chi-square distributed. Furthermore, the compo-
nent of localization error along any arbitrary direction is nor-
mally distributed. The above assumption about the distribution
of elements of allows the use of a closed-form solution for
the registration problem itself and as pointed out by Sibson [18],
permits us to neglect the rigid body transformation relating
and , as FRE and TRE are independent of this reorientation.
We note that, under these assumptions, the variance of each el-
ement of is equal to FLE K.

We, thus, simplify the problem to that of registering to
. As the choice of origin for is arbitrary, we

choose the centroid of to be the origin.
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III. D ERIVATION OF THE DISTRIBUTION

We may adjust the -by- matrix, of fiducial positions
by choosing the origin of coordinates so that is centered,
meaning that

(4)

We may write the Singular Value Decomposition ofas

(5)

where
-by- orthogonal matrix;
-by- diagonal matrix;
-by- orthogonal matrix.

The value of depends on our choice of orientation of coor-
dinate axes. As with the choice of origin, the choice of axes is
also arbitrary. We choose the orientation so that , the

-by- identity matrix. This choice implies that the coordi-
nate axes coincide with the principal axes of. We now make
explicit the relationship of this registration problem to perturba-
tion theory: We write the fiducial set to which is to be regis-
tered as

(6)

where is a positive dimensionless constant whose value will
be taken to be small enough to allow us to ignore higher order
terms in as they arise in the derivations below.

A. Choice of Translation

It is well known that the translation component,, of the reg-
istration that minimizes (1) for any is simply the translation
that aligns the centroids of the two fiducial sets, i.e.,

(7)

We write as the demeaned version of, i.e.,

(8)

Then with (1) and (7) we find that

(9)

B. Choice of Rotation

Using (9) in (1), we see that the rotation component of the
optimal registration is the orthogonal matrix that optimally
registers the points in to the corresponding points in

. We do not attempt to derive the exact form of this rotation
matrix; instead, we express it as a power series in

O (10)

C. Expression for TRE

Our goal is to find an approximate expression for the distribu-
tion of TRE( . Following Sibson, we note that this distribution,

like that of FRE, depends only on errors in localizing the fidu-
cials, as opposed to gross motion between the two spaces. Also
following Sibson, we will continue to treat the case in which the
localization error is negligible in the “ ” space. With these two
assumptions we may use (6) The following expression results:

(11)

where theTRE (in bold font) is the displacement vector, as op-
posed to the magnitude, of TRE. We should note that translation
is first order in , as can be seen from (7). Expanding the rota-
tion matrix in and noting that when , we have

O . Hence, to first order in we may write

(12)

We now wish to derive . We begin by imposing the orthog-
onality requirement on

O O

O

Therefore, is antisymmetric

(13)

We note from(2) and (3) that for the optimal,
, from which we see that

(14)

(Note that we will make no other use of the SVD solution. In
fact, in Schönemann’s derivation, this symmetry is established
before decomposition is employed. Thus, we do not need to
know the complete solution in order to derive the first order
approximation.) We use (6), for , but in order to account for
translation, we must use demeaned versions ofand . As dis-
cussed before (4), we have demeanedby our choice of origin.
We demeaned in (9), where we found that

(15)

Writing (8) in component form gives

(16)

where is used to label fiducial points and
is used to label coordinate axes. We now use (15), the expan-

sion of and (13), in (14). The result is a series of equations
for each power of . The linear terms yield

(17)

We wish to solve this equation for . The solution is made
difficult by the fact that occurs multiplied on both the right
and left. Following Goodall [24], we perform SVD on to
get , where and are orthogonal and is di-
agonal. Our assumption that the elements ofare identically
distributed [see after (6)] assures isotropy in the perturbations.
Thus, we can without loss of generality orient our coordinate
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system in any direction we choose. We pick the orientation to
be along the principal axes of the distribution of fiducial points,
which means that . Thus, we have

(18)

[Note: Neither this reorientation nor the special positioning of
the origin above is necessary to effect a solution to (17), nor for
any part of the derivation that follows. However, they do reduce
the complexity considerably and they can be easily undone at
the end.] Employing (18) enables us to solve (17)

(19)

which is the result given by Goodall in 1991 [24] and similarly
to Goodall we have defined

(20)

Because of the antisymmetry of , we may rewrite (12) as

(21)

where

(22)

in the case that the spatial dimensionis equal to three. For
the rest of this derivation, we will consider only the case 3.
(We have previously derived [20] an expression for the expected
value of TRE that holds for general .)

1) Resolution Into Independent Components:We wish to re-
solve into components along three orthogonal vectors
in such a way that each of these three components of TRE is
independent of the others. This task is made easier by taking
advantage of two facts: 1) A linear combination of normal vari-
ables is itself a normal variable and 2) if two variables
are uncorrelated, then they must be independent [25]. With our
neglect of higher order terms, any component ofTRE is neces-
sarily a linear combination of the normally distributed elements
of . Because the elements ofhave zero mean, the compo-
nents ofTRE have zero mean. Thus, our problem is reduced to
resolvingTRE into components that are uncorrelated.

We choose the first of these components to be a vector in the
direction , the unit vector in the radial direction and the second
to be in the direction of a unit vector, that is perpendicular
to . The third vector in this set must, thus, be .
We denote the components of TRE in these three directions as
TRE , TRE , and TRE , respectively. We know that

TRE (23)

Similarly, we have that

TRE (24)

and

TRE

(25)

Given that is constrained to be orthogonal to, this simplifies
to

TRE (26)

where is the magnitude of the vector. In this way, we may
write

TRE TRE TRE (27)

and we wish to choose so that

(28)

and

TRE TRE TRE TRE TRE TRE (29)

2) Translational and Rotational Cross Correlations:In
order to derive , we first need expressions for ,
and . From (7) we have that

(30)

We know that

(31)

which may be written as

(32)

because distinct elements ofare independent. Recalling that
each element of is defined to be a zero-mean, normally dis-
tributed random variable with variance, we have that

(33)

where is the Kronecker delta function defined as 1 and
0 for .

From (19) and (22) we have that

(34)

where , or . Using (20) to
expand the elements of, we have that

(35)
Using (16) to expand in terms of , we have (36) shown at
the bottom of the next page. Using independence of distinct el-
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ements of , this may be simplified to (37) shown at the bottom
of the page. Clearly

(38)

From this we may deduce that the expected product of anyand
is zero,i.e., they are uncorrelated. Finally, we have products

of the form . Any such product may be expressed as

(39)

From the definition of , we have that

from which we may deduce that

By orthogonality of , we know that

(40)

Because , we also have that

(41)

This gives us the result that

(42)

Using this result in (39) gives the equation shown at the bottom
of the next page. Clearly this is only nonzero when and

, or when and . From the definition of in
(22), we can see that this happens if and only if . Thus,

0 for . We denote as .
3) Choice of Direction for : Having proved that the ex-

pected values of the products of components ofand are all
zero, we return to our derivation of. We wish to ensure that
the component of TRE along each of our set of vectors is un-
correlated with the others. It happens that the radial component
TRE is uncorrelated with TREand TRE as a consequence
of orthogonality. For example

TRE TRE

where we have used uncorrelation of elements ofand .
Thus, our choice of is determined by the condition that
TRE TRE be equal to zero. We have that

TRE TRE r
(43)

but recalling that the elements ofand are uncorrelated, as
are distinct elements of, this reduces to

TRE TRE r (44)

(36)

(37)



922 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 9, SEPTEMBER 2001

Because the left-hand side of the above equation is to be set to
zero, the equation may be multiplied throughout by a constant.
Instead of finding , we first find a vector of arbitrary length
in the same direction as. We write the three components of
as , , and , the corresponding components ofas , ,
and and those of as , , and . We require that

(45)

Expanding this in the components of, , and gives

(46)

Recalling that , (46) reduces to

(47)
The other equation that must be satisfied byis

(48)

We first treat the special case in which at least one component
of is equal to zero. We assume, without loss of generality, that

0. Then (47) and (48) reduce to

(49)

and

(50)

respectively. There are two ways of satisfying the first equation:
by setting 0 or by setting 0. As this equation is
quadratic in , , and , these must be the only two solutions.
If we choose to set 0, there is a line of possible solutions
for and . We may choose any solution from the line; we
then normalize to produce . If we choose to set
0, clearly 1. We can see by inspection that these solutions
are orthogonal to each other and to. Thus, we have proved that
they are the and that we seek.

We should also note that if, for any , , then
there are two simple solutions to (47). For example, if ,
(47) may be satisfied by setting 0 or by setting
0. As in the case described above, these two solutions may be
easily shown to be and .

We now address the general case in which no component of
is zero and all the are distinct. From (48), we have that

(51)

and multiplying (47) by and using the above substitution gives

(52)

Rearranging in powers of , this may be rewritten as

(53)

(54)

We may choose to solve for either or ; we choose to solve
for and we wish to check whether (54) always has real roots.
Writing the equation as , the condition for
real roots is that . In this case, we have that

(55)
and

If , clearly and the roots are real. Other-
wise, we know that

(56)

hence

(57)

so the roots are real. As is of arbitrary length, we set
1 and solve for . Using the quadratic formula, we have (58)
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shown at the bottom of the page. This gives two possible solu-
tions for and for each solution we may derive a corresponding
value for from (51). We label these as , , and ,
and the vectors formed from them as and . We have en-
sured that these two possible solutions forare orthogonal to

and that their components of TRE are uncorrelated with each
other. It remains only to show that the two possible values of
are orthogonal in order to complete the proof that they are the
and that we seek. We have that

(59)

Using the fact that and applying to (54) the
formulae for sums and products of roots of a quadratic equation,
this may be rewritten as

(60)

which can be seen to sum to zero. Thus, the two solutions of
(54) lead to and .

D. Expected Values

We now derive the expected value of the square of the mag-
nitude of the total displacement,TRE and also that of the
square of the component ofTRE in any arbitrary direction. First
we derive the variances, , , and , of each of the compo-
nents ofTRE. Because their means are zero, the variances of
these components are equal to their mean squared values. Thus,
from (23) we have that

TRE t t t t (61)

Similarly, from (24) and (26)

TRE w t (62)

which may be rewritten as

(63)

and

TRE r t r

(64)
Using these expressions for the variance of the components, we
have that

TRE TRE TRE TRE
(65)

Because , and form an orthogonal set of axes, we know
that

(66)

and, hence

(67)

Thus, we may rewriteTRE as

(68)

which may be further simplified to

(69)

We write the distance offrom axis as , (e.g., );
we then have that

TRE (70)

Finally, we express in terms of and . We have that

(71)

(58)
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For , or . But is
equal to the sum of squared distances of the fiducial points from
axis ; we will write this quantity as . We have, then, that

TRE

FLE
N

(72)

which is the 3-D case of the expression we previously derived
[20] for the expected squared TRE.

We now derive the expected squared value of the component
of TRE in an arbitrary direction. We represent this direction by
the unit vector . From (27) we can see that the component of
TRE in direction is

TRE TRE TRE TRE (73)

where and . We may then
deduce that

TRE TRE TRE TRE (74)

recalling that the fact that the three components ofTRE are un-
correlated ensures that the expected product of distinct compo-
nents is zero. From (61), (63), and (64) we can see that we may
rewrite (74) as

TRE

(75)

where and are the components of along and ,
respectively.

E. Distributions

We have shown how to decompose into three or-
thogonal components that are uncorrelated with each other. Be-
cause they are linear combinations of variables, namely
the , these three components are themselves normal variables
with zero mean. Because they are uncorrelated, they are also in-
dependent [25].

Since the three orthogonal components ofTRE are indepen-
dent, normally distributed variables with zero mean, TREis
distributed as the sum of three chi-square variables

TRE (76)

From (73), we know that TREis the sum of three independent,
zero mean, normal variables. Hence, we may deduce that TRE
itself is a zero mean, normal variable and that its varianceis
equal to TRE . We write

TRE (77)

where is equal to the right-hand side of (75).

IV. NUMERICAL SIMULATIONS

Equation (72) has been shown [20] to be in excellent agree-
ment with numerical simulations. In this paper, we have derived
(76) and (77), which are distributions, as opposed to merely ex-
pected values. In order to test our approximation and verify our
derivations, we have performed some additional simulations.
We have chosen (76) for numerical simulation because it in-
cludes contributions from all components of TRE.

First, we chose five values of for which to perform the test:
3, 4, 10, 20, 50. For each of these values of, we gener-

ated the correct number of fiducial positions randomly with uni-
form distribution within a cube of side 200 mm and one target
position randomly with uniform distribution within a cube of
side 400 mm. In order to model the FLE of (6), we perturbed in-
dependently the, , and components of the fiducial positions
in one space, using normally distributed independent random
variables with zero mean and variance 1/3 mm. In this way, we
produced the same model as that used by Sibson in 1979 [18]
and for our previous simulations [20]. We registered the per-
turbed positions to the original ones, measuring the TRE at the
target position according to (11).

One simulation consisted of 100 000 repetitions of the per-
turbation and registration step, allowing us to estimate the dis-
tribution of squared TRE. We performed 100 000 iterations of
generating three independent, zero-mean normal variables with
variances as derived in Section III-C to represent the three com-
ponents of TRE; we squared and added these variables to give
a squared TRE value. We used the Kolmogorov-Smirnov test
[26] to compare the distributions of these simulated and gener-
ated values. In the case 10, there was a significant differ-
ence between the two distributions (K-S test, ), but
this difference was not significant to . In all other
cases, there was no significant difference. In Fig. 2, we show
corresponding percentiles of squared TRE for the generated and
simulated values. The fact that each plot shows a straight line
along demonstrates that the distributions of the two types
of values match closely. From the percentile values themselves
in these five plots we can also see that, as implied by (72), the
magnitude of TRE is decreased as more fiducials are added. The
only exception is to this rule is that the TREpercentile values
for 20 are smaller than those for 50. The explanation
for this is that the randomly chosen target for 50 happens
to be more than five times further from the fiducials’ centroid
than is the case for 20 and (72) also implies that TRE in-
creases with distance of the target from the fiducials’ centroid.
In Table I, we compare the predicted variance of each compo-
nent of TRE from (61), (63), and (64) with the observed variance
of these components of the simulated values. For all the fiducial
configurations studied, the observed values match the predicted
ones within 1%. As pointed out in Section I, our derivations take
account of anisotropy in the rotational components of registra-
tion error. A convenient measure of the anisotropy is . In
Table I, for the case 3, 0.83 and for the case

4, 0.47 using (63) and (64) to derive this ratio
given and ; these two cases demonstrate that our theory
correctly handles significant amounts of anisotropy in these ro-
tational components.
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(a) (b) (c)

(d) (e)

Fig. 2. Plots of corresponding percentile values for squared TRE. On thex axis are percentile values in 5% increments from five to ninety-five and the ninety-ninth
percentile value, for the simulated squared TRE. They axis shows the same percentiles for generated squared TRE values. (a) 3, (b) 4, (c) 10, (d) 20, and (e) 50
fiducial points.

TABLE I
COLUMNS 2, 3, AND 4 GIVE PREDICTED VARIANCES OF TRE , TRE

AND TRE ACCORDING TO(61), (63),AND (64). COLUMNS 5, 6,AND 7
GIVE THE OBSERVEDVARIANCES OFTHESETRE COMPONENTSFROM

NUMERICAL SIMULATION . COLUMN 8 GIVES THE MAXIMUM PERCENTAGE

DISCREPANCYBETWEEN CORRESPONDINGPREDICTED AND OBSERVED

VALUES FOREACH ROW

V. DISCUSSION

We have shown that TRE may be separated into three orthog-
onal components and that these components have a zero mean,
normal distribution with variances given by (61), (63), and (64).
We have also demonstrated that the components are indepen-
dent of each other and, hence, we know that the square of TRE
is distributed as in (76). As expected, the radial component of
TRE has the smallest variance, as this component contains only
translational error; the other two components contain both rota-
tional and translational error. In addition to the square of TRE,
we have also derived the distribution of TRE, the component
of TRE in an arbitrary direction. We find that this distribution

is normal. The normal form is inevitable because 1) in the limit
of zero perturbation TRE is zero and 2), we have ignored terms
of order two and higher in. TRE is, therefore, a linear combi-
nation of the elements of and is, thus, a zero mean, normally
distributed variable. In (75), we have given, the variance of
this variable, which completes the derivation.

The close agreement of the predicted values of, , and
with those given by the numerical simulations shows that our
first-order approximation is a good one for the fiducial configu-
rations we tested. However, when applying this theory to general
configurations, care must be taken to ensure that the conditions
are such that this approximation remains valid. This will be the
case as long as , the second order component of the rota-
tion, remains small compared to . From the orthogonality
condition on we know that

O O
(78)

and equating second order terms ingives that

(79)

Thus, we know that the symmetric part of the second order term
is much smaller than in the case that . From the
definition of in (19), we can see that this will be the case
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Fig. 3. The rotational component of TRE(r). To first order, the error is a
motion orthogonal to the axis of rotation
 and tor, represented byR .
At second order, there is an additional component corresponding to movement
toward the axis of rotation, represented by the symmetric part ofR .

if the magnitude of the perturbations inand, thus, the magni-
tude of the elements of , is much smaller than the moment of
the fiducial configuration about each axis. For a near-collinear
fiducial configuration, this relationship may not hold. One of the
moments will be small; if this moment is of the same order
of magnitude as the elements of, representing the FLE, the
approximation we use is no longer valid. In the numerical simu-
lations we performed, none of the configurations is collinear by
this measure.

We know that we can write as ; hence, from (79)
we can see that we may write as .
We illustrate the rotational component of TRE in Fig. 3. This
rotational motion may be considered as being analogous to that
of the motion of a particle rotating about an axis; its velocity
is equivalent to the first order term and the symmetric part of

represents the second-order “correction” to this velocity,
i.e., the particle’s acceleration toward the center of the circle.
Theantisymmetricpart of is the second-order “correction”
to the rotational axis about which the first-order rotation takes
place. The determination of this correction is beyond the scope
of this present work.

VI. CONCLUSION

With (75)–(77), we have derived the approximate expressions
for the distribution of TRE that we set out to find. Our approx-
imation agrees closely with simulations, showing that it is an
excellent indicator of TRE, as long as the fiducial configuration
is sufficiently noncollinear.

We should note that the predictive value is at its greatest
when the assumptions under which it was derived remain valid,
namely that all the spatial components of localization error for
all the fiducials are independent, normally distributed random
variables with zero means and equal variances. Because med-
ical images are commonly anisotropic,i.e., they have different
spatial resolutions in the coordinate directions, it is not always
a good assumption that FLE is isotropically distributed. This
problem is ameliorated, however, when the fiducal points are the
centroids of markers that are large enough to encompass two or
more voxels [27]. Although we have shown elsewhere [28] that,
at least in terms of expected value of TRE, our theory is still of
value for such cases, it remains an interesting problem to extend

our derivations to allow for the anisotropy in FLE that some-
times accompanies anisotropy in the voxel dimensions. This
problem will no doubt prove to be a difficult one, because there
is no known closed-form solution to the rigid-body registration
problem in the case that errors must be weighted differently ac-
cording to their direction [27]. Another problem is that of un-
equal weighting among the fiducials in (1). Unequal weighting
is appropriate when the localization error varies among the fidu-
cials. This situation arises when the fiducials are derived from
landmarks of varying visibility and definition.

While future solutions of the problems of spatial anisotropy
and fiducial weighting may extend the application of this
work to other medical areas, the assumptions that we have
made for these derivations are already realized quite faithfully
for bone-attached fiducial markers, used in neurosurgery,
orthopedic surgery and radiation oncology. It is hoped that the
statistical distributions of the components of TRE that we have
derived here will allow surgeons and radiation oncologists to
use point-based image registration with more confidence to aid
both diagnosis and treatment.
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