Proposal for
Robot Assistance for
Neurosurgery

Peter Kazanzides
Assistant Research Professor of Computer Science
Johns Hopkins University
December 13, 2007
Funding History

• Active funding for development of open source software for (medical) robotics:
 – NSF CISST ERC infrastructure
 – ERC Supplement for Surgical Assistant Workstation (with Intuitive Surgical)
 – NSF Major Research Instrumentation (MRI) for sensing, modeling, and manipulation

• ERC provided seed funding for preliminary work in neurosurgery. SPL contributed resources.

• Targeting PAR-07-249 (Collaborations with NCBC): due Jan 17, 2008
Preliminary Work

• Use robot assistance to improve safety of skull base drilling:
 – Define “safe zone” (virtual fixture) in CT
 – Register CT, patient, and robot
 – Robot holds cutting tool
 • Cooperative control: responds to surgeon’s forces
 • Virtual fixtures: prevent excursion outside “safe zone”
Prior Work

• Acrobot Robot for knee surgery
 – Brian Davies, Imperial College, London
• Virtual fixtures for sinus surgery
 – Li & Taylor, JHU
• Other robots for skull base surgery
 – Bumm et al., Germany
 – Federspil et al., Germany
 – NeuRobot (Sim et al.), Singapore
System Architecture

StealthStation

3D Slicer

VF definition

navigation data

calibration registration

Application & Robot Control

Real Time OS (RTAI)

NeuroMate

input force

motion control

surgeon

cooperative control w/ virtual fixture

patient
Cadaver Experiment
Results

- Phantom experiments with foam blocks to measure accuracy
- Cadaver experiments to assess clinical feasibility and accuracy

Table 1: Results of phantom experiments (errors in mm): Dimensional error is positive for overcut (more bone removed).

<table>
<thead>
<tr>
<th>Num</th>
<th>Placement</th>
<th>Dimensional</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>-0.49</td>
<td>-0.96</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>-1.28</td>
<td>-1.11</td>
<td>0.70</td>
</tr>
<tr>
<td>3</td>
<td>0.44</td>
<td>-0.79</td>
<td>0.99</td>
</tr>
<tr>
<td>4</td>
<td>-1.04</td>
<td>0.62</td>
<td>0.54</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.59</td>
<td>-0.56</td>
<td>0.62</td>
</tr>
<tr>
<td>StDev</td>
<td>0.76</td>
<td>0.80</td>
<td>0.31</td>
</tr>
</tbody>
</table>
Issues Encountered

• Stability of Slicer 3.0 IGT code

• Slicer CT coords ≠ Stealthstation CT coords
 – Need rasToIjk matrix from xml file

• Interface between robot and Slicer (SPLOT) negatively affected PC performance

• 2D view does not show tool or VF model
 – Stealthstation showed tool
Issues Encountered

- Created standalone VTK program to simplify VF and remove section to allow cutter access
- Too many screens to look at:
 - Robot, Slicer, Stealthstation, endoscope (sometimes)
- Accuracy could be better (about 1.5 mm)
Proposal Goals (1)

• Preoperative planning
 – Multimodal image fusion (CT, MRI)
 • MRI useful when tool must avoid nerves/vessels that are tethered to skull base
 – Create 3D model of virtual fixture
 • Accounts for cutter radius
 • Simplified for better real-time performance
 • Maybe offset for registration uncertainty?
Proposal Goals (2)

• Intraoperative control
 – Integrate Robot GUI within Slicer
 – Use middleware between Slicer and robot controller (RTOS)
 – Maybe update registration?

• Intraoperative visualization
 – Dynamically construct and display model of area that has been cut
 – Automatically show surgeon “best” view
 – Integrate endoscope video
 – Simple interface via pendant (or foot pedal)
Proposal Goals (3)

• Postoperative validation
 – Perform cadaver experiments
 – Align postoperative and preoperative CT
 – Quantify performance of system
 • Key metric is bone overcut
 • Can use DSC (Dice Similarity Coeff), etc. to compare dynamically constructed cut model to postop CT
Where are we going?

• This technology (constrained control with virtual fixtures) is good for bone.

• Would like to extend to soft tissue (e.g., endoscopic removal of deep brain tumors)
 – Preop virtual fixtures lose relevance
 – Local sensor feedback (OCT, US) can show critical structures around tumor
 – Dynamically construct VF from local sensor feedback?
 – Deform preop VF based on local sensor feedback (including video)?
Acknowledgments

JHU
- Tian Xia
- Clint Baird
- George Jallo
- Iulian Iordachita

- NSF EEC 9731748

BWH
- Nobuhiko Hata
- Kathryn Hayes
- Nobuyuki Nakajima
- Haiying Liu

- NIH 1U41RR019703-01A2,
- NIH P41 RR13218
- NIH U54 EB005419