Image Guided Therapy in Slicer3

Planning for Image Guided Neurosurgery

Danielle Pace, B.CmpH
Isaiah Norton
Haiying Liu
Acknowledgements

National Alliance for Medical Image Computing
NIH U54EB005149

Neuroimage Analysis Center
NIH P41RR013218

Brain Science Foundation

Surgical Planning Laboratory (BWH)
Nobuhiko Hata, Steve Pieper, Ron Kikinis, Haiying Liu, Sonja Pujol, Randy Gollub, Rodrigo de Luis Garcia, Carl-Fredrik Westin

National Center for Image Guided Therapy
NIH U41RR019703

NEDO Intelligent Surgical Instruments Project
Kiyo Chinzei
Acknowledgements

Thanks to

- **Alexandra Golby**, Department of Neurosurgery, Brigham and Women’s Hospital
- **James Miller**, Visualization and Computer Vision, GE Research
- **Kilian Pohl**, Surgical Planning Laboratory, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School
- **Takashi Suzuki**, Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University
- **Stephen Whalen**, Department of Neurosurgery, Brigham and Women’s Hospital

for their helpful comments and suggestions
Learning objectives

Following this tutorial, you will be able to perform many common Image Guided Therapy tasks using Slicer3, including:

– image registration
– model making
– DTI tractography

using the example of preoperative planning for image guided neurosurgery
Material

This course requires the installation of the Slicer3 software and the training datasets accessible at the following locations:

- Slicer3 software and building instructions: http://www.slicer.org/pages/Downloads

Disclaimer: It is the responsibility of the user of 3D Slicer to comply with both the terms of the license and with the applicable laws, regulations and rules.
Prerequisites

3D Slicer

• Integrates algorithms and utilities for medical image computing research and Image Guided Therapy into a single framework
• Is both an end-user application and a platform for research
• The precompiled program and the source code are both freely downloadable
Image Guided Therapy (IGT) in Slicer3

Slicer3 has extensive support for IGT, including:

- Visualization
- Registration
- Segmentation
- Model making
- Diffusion Tensor Imaging
- Quantification
- Filtering
- Interfacing to imaging devices, trackers and medical robots

Focus of this tutorial
The goal of neurosurgical planning

- Prior to surgery:
 - Integrate image information from multiple sources, including anatomical MRI, functional MRI and diffusion tensor imaging
 - Highlight structures of interest
 - Determine the best surgical approach
Clinical Case - brain tumour resection

- Imaging showed a large lesion in the left frontal region of the brain, predicted to be a glioma (brain tumour originating from glial cells)
- Preoperative imaging included 3D SPGR MRI, T2-weighted MRI and FLAIR MRI, language and motor functional MRI (fMRI) imaging, and diffusion tensor imaging (DTI)
- fMRI showed speech areas close to the lesion
- Surgical procedure: left frontal craniotomy and tumour resection

See the clinical_background file within the patient dataset for more information
Tutorial datasets

- Three clinical datasets from a single patient with a large tumour in the left frontal region
- SPL-PNL brain atlas (based on a single healthy patient)

SPGR MRI (anatomical) Language fMRI Diffusion Weighted Images SPL-PNL brain atlas
Overview

1. **Loading and visualizing anatomical MRI data**
 - Incorporating fMRI data using image registration and thresholding
 - Creating a 3D model of the tumour volume
 - Predicting the locations of brain structures using image registration and a brain atlas
 - Incorporating brain fiber tractography from diffusion weighted images
 - Annotating the preoperative plan and saving the scene
Anatomical imaging

- **Utility of anatomical imaging in IGT:**
 - Visualize brain structures of interest, such as the lesion
 - Perform measurements on structures of interest
 - Provide context for the rest of the scene
Anatomical imaging

• **Steps involved in this section:**

 Load anatomical MRI from patient dataset
Load the anatomical MRI data

Select “Add Volume” from the File menu
Load the anatomical MRI data

Select the “3D_SPGR” folder under patient_data set

Click “Parse Directory”
Load the anatomical MRI data

Note the DICOM fields at right, displaying patient information and scan parameters.
Load the anatomical MRI data

Select “AX FSPGR 3D”

Click “Apply” to load the file.
Load the anatomical MRI data

Open the Data module
Load the anatomical MRI data

1. Click on the “AX SPGR 3D” node
2. Expand the “Node Inspector”,
3. Enter “anatomical-MRI” and press Enter
Load the anatomical MRI data

Observe that the name of the node is changed in the MRML tree
Overview

1. Loading and visualizing anatomical MRI data

1. Incorporating fMRI data using image registration and thresholding
 • Creating a 3D model of the tumour volume

1. Predicting the locations of brain structures using image registration and a brain atlas

1. Incorporating brain fiber tractography from diffusion weighted images

1. Annotating the preoperative plan and saving the scene
Functional MRI (fMRI)

- **fMRI:**
 - Measures the blood oxygen level in each part of the brain while the patient performs a task, such as a speech or motor task
 - Statistical techniques are used to determine which brain regions are active during the task
 - This statistical pre-processing has already been done using SPM

(SPM)
(http://www.fil.ion.ucl.ac.uk/spm/)
Functional MRI (fMRI)

- **Utility of functional MRI in IGT:**
 - Damage to regions of the brain important for language or movement could result in problems with speech, reading or movement
 - Knowing where these regions are allows us to modify our surgical plan so that we avoid them (as much as possible)
Functional MRI (fMRI)

- **Steps involved in this section:**
 - Load language fMRI from patient dataset
 - Register language fMRI with anatomical MRI
 - Threshold language fMRI to display regions with high activation
Load the language fMRI data

Go to
File Menu->
Add Data

Click “Add Files”
Load the language fMRI data

Select both .hdr images in folder language_FMRI/Processed:

ant_t9.hdr
meanANT.hdr

Click on “Open”
Click on “Apply”
Load the language fMRI data

Set the background volume to anatomicalMRI

Click on the “fit to window” button

Click on “Center 3D View” button.
Load the language fMRI data

Set anatomicalMRI to background and meanANT to foreground

Scale the opacities to see both the foreground and background layers (adjust window/level if needed)
Load the language fMRI data

Note that the image volumes are not aligned
Image-to-Image registration

The anatomical MRI and functional MRI image volumes are not aligned

The mean fMRI activation volume will be aligned to the anatomical image. This registration will be used to align the thresholded functional activation volume.
Image-to-image registration

- Steps involved in image registration:
 - Initial manual transformation
 - Automatic affine registration

 - An affine transformation estimates the rotation, translation, scale and shear needed to align the moving image with the fixed image
 - Slicer’s affine registration module uses mutual information to estimate the similarity between two images
Initial manual transformation

Open the Transforms module
Initial manual transformation

Create a new linear transform

The new transform is initialized to the identity matrix.
Open the Data module

Change the name of the transform to "anatomical_languagefMRI_registrationTransform"
Initial manual transformation

Drag the meanANT and ant_t9 nodes under the transform node.

Now any changes to the transform node are applied to the language fMRI image volume.
Initial manual transformation

Open the Transforms module

Adjust the translation components to roughly align the two image volumes in the axial plane
This initial transformation matrix “pushes” the language fMRI image into rough alignment with anatomical MRI image.

Next, automatic affine registration will closely fit the fMRI to anatomical image.
Automatic affine registration

Open the Affine Registration module
Automatic affine registration

Note that the Affine registration module supports multiple sets of parameters for repeated use. To create a new set, select:

“Create new CommandLineModule”

Then set parameters as follows -
Automatic affine registration

- Translation scaling = 500
- Initial transform = anatomical_language fMRI_registrationTransform
- Output transform = anatomical_language fMRI_registrationTransform
- Fixed Image = anatomicalMRI
- Moving Image = meanANT
- Output Volume = Create New Volume

Click “Apply”
Automatic affine registration

Set the foreground to meanANT, and the background to anatomicalMRI.

Click on the “fit to window” button.
Automatic affine registration

The transform now sets the moving image (meanANT, now green in color) in alignment with the fixed image (anatomical MRI)
Automatic affine registration

Click on the transform node to see that the matrix has changed.
Automatic affine registration

Open the Data module

The new volume in the MRML scene is the resampled moving image (the meanANT fMRI template)
Automatic affine registration

Set the foreground to anatomical MRI and the background to Affine registration Volume1

Click on the “fit to window” button
Automatic affine registration

Scale the opacities to see that the images are aligned.

The new image is the moving image (meanANT) transformed and resampled to align with the fixed image (anatomical MRI).
Automatic affine registration

Right-click on the Affine registration Volume1 node and select “Delete node”
Threshold image intensity

Open the Volumes module

Set the foreground to ant_t9 and the background to anatomicalMRI

Click on the “fit to window” button

Set the active volume to ant_t9

Expand the Display pane
Threshold image intensity

Set the Color to “fMRI”
Threshold image intensity

Set the threshold to Manual and set range: [1] [256]

Note that there are speech activation regions close to the tumour.
Overview

1. Loading and visualizing anatomical MRI data

1. Incorporating fMRI data using image registration and thresholding

1. Creating a 3D model of the tumour volume

1. Predicting the locations of brain structures using image registration and a brain atlas

1. Incorporating brain fiber tractography from diffusion weighted images

1. Annotating the preoperative plan and saving the scene
Model Making in Slicer3

• **Utility of model making in IGT:**
 – View the structure as a complete unit (instead of slice by slice)
 – Perform measurements, such as volume measurements, that can be difficult to perform on the image volume itself
Model Making in Slicer3

- Steps involved in this section:
 - Place a seed point on the tumour in the anatomical MRI
 - Segment the tumour volume in the anatomical MRI
 - Create the tumour model using Slicer3’s ModelMaker
 - Change the tumour model’s appearance
 - Save the tumour model
Place the seed point

Click on the Background layer button to show the anatomical MRI alone
Place the seed point

Open the Fiducials module
Place the seed point

Create a new Fiducial List
Place the seed point

Expand “Other Display List Properties”

Controls include fiducial color (default: pink), and shape (starburst)
Place the seed point

Set the mouse mode to “place items”
Place the seed point

Slice through the image volume until you see the tumour in all three views.

Click once to place the seed.
Place the seed point

Set the mouse mode to “transform view”
Place the seed point

The fiducial can also be seen in the 3D Viewer
Segment the tumour volume

Open the “Segmentation -> Simple Region Growing” module
Segment the tumour volume

- Parameter set = Simple region growing
- # of iterations = 1
- Seeds = FiducialList1
- Input Volume = anatomicalMRI
- Output Volume = Create New Volume

Click “Apply”

This step may take a few minutes to run - wait until the status says “Completed”
Segment the tumour volume

Set the background to anatomicalMRI

Click on the “fit to window” button

The tumour is segmented by the label layer called “Simple Region growing Volume1” (shown in purple)
Create the tumour model

Open the Model Maker module
Create the tumour model

- Parameter set = Create new CommandLine Module
- Input Volume = Simple region growing Volume1
- Models = Create New ModelHierarchy
- Model Name = Tumour
- Labels = 255 (scroll over the purple tumour and note the “Lb” value)
Create the tumour model

Click “Apply”

This step may take a few minutes to run - wait until the status says “Completed”
Create the tumour model

Slice through the image volume to expose the tumour model in the 3D Viewer
Create the tumour model

Open the Data module

Delete the FiducialList and Simple region growing Volume by right-clicking and selecting “Delete Node”
Create the tumour model

Note that the model now appears in the MRML tree

Change the name of the model to “tumourModel”
Change the model’s appearance

Open the Models module
Change the model’s appearance

Select the tumour model
Change the model’s appearance

Set the model’s opacity to 0.6

Click on the box next to “Set Color” to change the colour of the model to blue
View the anatomical MRI, fMRI and tumour model

Click on the Foreground layer button to show the language fMRI data
Overview

1. Loading and visualizing anatomical MRI data

1. Incorporating fMRI data using image registration and thresholding
 • Creating a 3D model of the tumour volume

1. Predicting the locations of brain structures using image registration and a brain atlas

1. Incorporating brain fiber tractography from diffusion weighted images

1. Annotating the preoperative plan and saving the scene
The SPL-PNL Brain Atlas

• Includes:
 – Anatomical MRI
 – Label maps
 – >160 models from a healthy volunteer
Incorporating a brain atlas

• **Utility of an atlas in IGT:**
 – Estimate the positions, orientations and shapes of important brain structures without having to segment each one in the patient dataset
Incorporating a brain atlas

• Components of the brain atlas used here:
 – Anatomical MRI image
 – Three models of segmented brain structures

• Using a brain atlas to approximate where brain structures are in the patient:
 – **Register** the atlas’s MRI with the patient’s MRI to determine the transformation between the atlas and the patient
 – Use the same transformation to **transform the atlas models** so that they overlap with the patient’s MRI
Incorporating a brain atlas

- **Steps involved in this section:**
 1. Import MRML scene
 2. Inspect the MRML scene
 3. Registration using the MRML scene

- The precomputed MRML scene contains a copy of the patient’s anatomical MRI, the atlas’s anatomical MRI, three models:
 - Left and right optic tracts
 - Left anterior superior temporal gyrus
 and the transformation between the patient and the atlas

- The anatomical MRIs of the patient and the atlas were registered with an initial manual transform followed by an automatic affine registration
Import the patient-atlas registration transform scene

Select File -> Import Scene

Note: Make sure that you select “Import Scene” and not “Load Scene”, as “Load Scene” will delete your work so far.
Import the patient-atlas registration transform scene

Select "anatomical MRI Registered ToAtlas.mrml", then click "Open"
Inspect the MRML scene

Open the Data module

Set the foreground to atlasMRI and the background to anatomicalMRI

Click on the “fit to window” button
Inspect the MRML scene - 6 new nodes

- atlasMRI = anatomical MRI from the atlas
- optic_tract_L.vtk = model of the left optic tract
- optic_tract_R.vtk = model of the right optic tract
- Superior_temporal_gyrus_ant_L.vtk = model of the left anterior superior temporal gyrus
Inspect the MRML scene

- Inspect the atlas MRML scene - 6 new nodes
 - anatomical MRI = copy of the patient’s anatomical MRI
 - anatomicalMRI_atlas_registration

Transformation = the transformation between the patient’s anatomical MRI and the atlas’s MRI
Inspect the MRML scene

Delete the duplicate anatomicalMRI node by right-clicking and selecting “Delete Node”
Inspect the patient-atlas registration

Scale the opacities to see how well the atlas MRI and patient anatomical MRI image volumes are aligned.
Inspect the patient-atlas registration

- **Important note:** Since an affine registration was used, the brain structure models from the atlas may not match the anatomy of the patient:
 - Affine registration does not account for differences in brain shape
 - The patient’s tumour will deform brain structures compared to the healthy atlas subject

- Thus the brain structure models give only a rough idea of their positions in the patient

- Non-linear registration could be used to partially remedy this - ex. B-Spline registration in Slicer3
Inspect the entire scene so far

Set the foreground to language fMRI

Click on the Foreground layer button to show the language fMRI data

Slice through the image volume to get a good view
Overview

1. Loading and visualizing anatomical MRI data

1. Incorporating fMRI data using image registration and thresholding
 • Creating a 3D model of the tumour volume

1. Predicting the locations of brain structures using image registration and a brain atlas

1. Incorporating brain fiber tractography from diffusion weighted images

1. Annotating the preoperative plan and saving the scene
Diffusion Tensor Imaging (DTI)

- Each diffusion weighted image shows the diffusion of water in the direction of the diffusion sensitizing gradient
Diffusion Tensor Imaging (DTI)

- Acquire diffusion weighted images (DWI) and baseline images
 - Estimate a tensor at each voxel to create a Diffusion Tensor Image (DTI)
 - Calculate a scalar “diffusion anisotropy index”, such as fractional anisotropy, to quantify the diffusion’s anisotropy
 - Perform tractography (fiber tracking)
Diffusion Tensor Imaging (DTI)

• Utility of Diffusion Tensor Imaging in IGT:
 – Major tracts that run between functionally important
 regions of the brain must remain intact to prevent side
 effects for the patient
 – Knowing where these tracts are allows us to modify our
 surgical plan so that we avoid them (as much as
 possible)
Diffusion Tensor Imaging (DTI)

• **Steps involved in this section:**

- Load and inspect the DWI data
- Create and inspect the tensors using a precomputed MRML scene
- Place the tractography seed points
- Perform tractography
- Registration using a precomputed MRML scene
Load the DWI data

Open the DICOM DWI Loader module:

Modules -> Converters -> Dicom DWI Loader
Load the DWI data

Create a new CommandLine Module

Click on the folder icon to set the DICOM directory
Load the DWI data

Click on the DTI folder within the patient dataset, then click “OK”
Load the DWI data

Set the dwImage to “Create New Diffusion Weighted Volume”

Click “Apply”

This step may take a few minutes. Wait until Status says “Completed”
Load the DWI data

Select the Volumes Module

Close “Display” tab and expand “Info” tab.

Select “Center Volume”
Load the DWI data

Note that the volumes are not correctly aligned.

Repeat the steps from slide 41 to align the volumes using manual transform followed by affine registration.
Load the DWI data

Turn the visibility off for the four models in the scene (tumour, left and right optic tracts, and left anterior superior temporal gyrus) by right-clicking and selecting "Toggle Visibility"
Inspect the DWI data

Open the Volumes module

Open the Display pane

Set the active volume to the DTI volume
Inspect the DWI data

Note that the Display pane now allows you to select the DWI volume

Set the background to DTI

Click on the Background layer button

Click on the “fit to window” button
Inspect the DWI data

Scroll through the 36 volumes in the set:
-0 to 4 are baseline images
-5 to 35 are diffusion weighted images
Inspect the DWI data

Note that the Diffusion Editor pane within the volumes module is activated when diffusion weighted images are loaded.

Expand the Diffusion Editor pane and note the gradients used to acquire the images.
Create the tensors

Select the Module “Diffusion Imaging -> Diffusion Tensor Estimation”
Create the tensors

Set the three “Output” fields to “Create New DiffusionTensorVolume”

You would click “Apply” to compute the tensors, but will upload a MRML scene of precomputed tensors because computing tensors takes a while.
Create the tensors

Open the Data module

Select File -> Import Scene

Note: Make sure that you select “Import Scene” and not “Load Scene”, as “Load Scene” will delete your work so far
Create the tensors

Select “precomputed Tensors.mrml”, then click “Open”
Create the tensors

3 new nodes:
- **Baseline Node**: image without diffusion weighting
- **Threshold Mask**: mask excluding the background
- **TensorNode** = the tensors

Set the background to the tensor node
Create the tensors

Open the Volumes module

Set the active volume to the diffusion tensor node

The fractional anisotropy is displayed by default
View the tensors

Set the Window/Level to Manual and adjust the levels to invert the image so that the tensors will be easier to see.
View the tensors

Scroll down and turn the glyphs on for all three views.

Adjust the scale factor and the spacing.
View the tensors

Line direction: the direction of the tensor’s main eigenvector

Line magnitude: the magnitude of the diffusion

Line colour: fractional anisotropy
View the tensors

Change the Glyph Type to “Ellipsoids”
View the tensors

Change the Glyph Type back to “Lines”
Place the tractography seed points

Open the Fiducials module

Create a new Fiducial List
Place the tractography seed points

Expand “Other Display List Properties.”

Set the glyph type to Sphere3D
Place the tractography seed points

Set the mouse mode to “place items”
Place the tractography seed points

Click to place one fiducial point in the corpus callosum

Set the mouse mode to “transform view”
Perform tractography (fiber tracking)

Open the tractography “Fiducial Seeding” module
Perform tractography (fiber tracking)

- DTI volume = Diffusion Tensor Estimation Volume
- Fiducial list = FiducialList2
- Output FiberBundle Node = Create New Fiber Bundle
Perform tractography (fiber tracking)

Open the Volumes module

Turn the glyphs off for all three views

Click on the “visibility” button to turn off the slice visibility
Perform tractography (fiber tracking)

One tract is generated for each fiducial.

The tract colour is the fractional anisotrophy by default.

Click and drag the pink sphere in 3D view to interactively select tracts.
Perform tractography (fiber tracking)

Open the Fiducials module

Turn off the visibility of the fiducials
Import the anatomical-DTI registration transform

Select File -> Import Scene

Note: Make sure that you select “Import Scene” and not “Load Scene”, as “Load Scene” will delete your work so far
Import the anatomical-DTI registration transform

Select “anatomical MRI Registered ToDTI.mrml”, then click “Open”
Inspect the MRML scene

Open the Data module

Inspect the atlas MRML scene - 3 new nodes

- anatomicalMRI = copy of the patient’s anatomical MRI
- BaselineNode = copy of the patient’s DTI baseline node
- anatomicalMRI_DTI_registrationTransform = aligns the DTI images with the anatomical image
Inspect the MRML scene

Delete the duplicate anatomical MRI node by right-clicking and selecting "Delete Node"
Inspect the MRML scene

Delete the duplicate BaselineNode node by right-clicking and selecting “Delete Node”
Inspect the MRML scene

Drag the three diffusion editor nodes, the fiducial list used to seed the tractography and the fiber bundle node under the “anatomicalMR I _DTI_ registration” Transform
Inspect the anatomical MRI-DTI registration

Set the foreground to the baseline DTI node and the background to anatomical MRI.

Scale the opacities to see how well the atlas MRI and patient anatomical MRI image volumes are aligned.
Inspect the anatomical MRI-DTI registration

Set the foreground to the tensor node and the background to anatomical MRI.

Scale the opacities to see how well the DTI FA map and patient anatomical MRI image volumes are aligned.
Inspect the entire scene so far

Set the foreground to language fMRI

Click on the “visibility” button

Click on the Foreground layer button to show the language fMRI data
Inspect the entire scene so far

Slice through the image volume to get a good view
Inspect the entire scene so far

Turn the visibility on for the four models in the scene (tumour, left and right optic tracts, and left anterior superior temporal gyrus) by right-clicking and selecting “Toggle Visibility”
Inspect the entire scene so far

The scene now contains anatomical MRI data, functional MRI data, a segmented tumour volume, estimates of other brain structures and brain fiber tractography.
Overview

1. Loading and visualizing anatomical MRI data

1. Incorporating fMRI data using image registration and thresholding
 • Creating a 3D model of the tumour volume

1. Predicting the locations of brain structures using image registration and a brain atlas

1. Incorporating brain fiber tractography from diffusion weighted images

1. Annotating the preoperative plan and saving the scene
Plan annotation

• Utility of plan annotation in IGT:
 – Surgeons can mark important points on the plan, such as the planned surgical access point, so that their notes can be brought into the operating room
Plan annotation

• Steps involved in this section:

 Mark the entry point and the tumour access point on the plan

 Measure the distance between the two points

 Save the scene
Annotate the plan

Open the Fiducials module

Create a new Fiducial List
Annotate the plan

Set the glyph type to Sphere3D
Annotate the plan

Slice through the sagittal plane until it roughly bisects the tumour volume
Annotate the plan

Adjust the 3D Viewer to get a view from the right
Annotate the plan

Set the mouse mode to “place items”
Annotate the plan

Place a fiducial on the sagittal plane representing the planned entry point for the left frontal craniotomy.
Annotate the plan

Double-click on the name of the fiducial and change it to “entryPoint”
Annotate the plan

Place a fiducial on the sagittal plane representing the planned access point to the tumour
Annotate the plan

Double-click on the name of the fiducial and change it to “tumour Access”
Distance measurements

Scroll down, and note that the distance between the two fiducials is shown.

Change the mouse mode to “transform view”
Inspect the final scene

Slice through the image volume to get a good view
Inspect the final scene

Set the layout to the “3D only layout”
Inspect the final scene

The result of neurosurgical planning

Planning for Image Guided Therapy using Slicer3 - D. Pace
National Alliance for Medical Image Computing
Save the scene

Select File -> Save
Save the scene

Click to set output directory for all files

Enter Scene Name under Node Type “Scene”

Click “Save Selected”
Overview

• In this tutorial, you learned how to
 – Register image volumes together
 – Segment and build models of structures of interest
 – Load diffusion weighted images, calculate tensors and perform fiber tractography

in order to build a preoperative neurosurgical plan incorporating
 – anatomical MRI
 – functional MRI
 – a model of the tumour
 – brain structure models from a registered atlas
 – fiber tractography
 – annotated fiducial points
Conclusions

• Slicer3 has extensive support for Image Guided Therapy

• Slicer3 is free open-source software that allows IGT researchers to share algorithms and work within a common framework
Image registration:

- Read about the mutual information similarity measure here:

Model Making:

- Slicer3 uses the marching-cubes algorithm to generate models - read about it here:

Diffusion Tensor Imaging:

• A review on DTI:

• A review on tractography: