OpenIGTLink

Junichi Tokuda¹

¹Brigham and Women’s Hospital / Harvard Medical School,

Luis Ibanez², Csaba Csoma³, Patrick Cheng⁴,
Haiying Liu¹, Jack Blevins⁵, Junpei Arata⁶, Xenophon Papademetris⁷, Nobuhiko Hata¹

²Kitware Inc., ³Johns Hopkins University, ⁴Georgetown University,
⁵Acoustic Med Systems, ⁶Nagoya Institute of Technology, ⁷Yale University
Acknowledgement

• Support for Open IGT Link comes from
 – National Institutes of Health
 • National Center of Image Guided Therapy (PI: Jolesz)
 • National Alliance on Medical Image Computing (PI: Kikinis)
 – NSF ERC CISST (PI: Taylor)
 – NEDO, Japan
 – Dr. Kiyoyuki Chinzei, AIST, Japan
IGT system: academic perspective

- Hardware/software components
 - MR/CT/Ultrasound scanners
 - Position tracking devices
 - Robotic devices
 - Navigation software

- Data types exchanged among the IGT system
 - Images
 - Positions / Transforms
 - Commands
 - Software / hardware status, etc…
Related standards / works

• Communication standards used in medical area
 – Device connection
 • IEEE 1073 -- Medical Device Communication
 • ISO 11898 -- Controller Area Network (CAN)
 – Picture archiving and communication system
 • Digital imaging and communication in medicine (DICOM)

• Network communication framework for IGT
 – CORBA [Schorr-2000]
 – OpenTracker [von Spiczak]
Our goals

- Availability: research and commercial
- Simplicity: from embedded system to HPC
- Extensibility: variety of data types
- Reliability: data verification mechanism
Our solution: OpenIGTLink

- Community-oriented Development
 - The project was launched in US national level meeting 2008 (NA-MIC, all hands mtg, January 2008, Slat Lake City, UT).

- Platform-independent
 - Multi-platform C/C++ library for Windows/Linux/Mac

Application

C++ socket &
thread class

C++ message class

C message structure

Operating System
The OpenIGTLink Protocol

- Code snippet
 - Nine lines to send linear transform data

```cpp
igtl::ClientSocket::Pointer socket;
socket = igtl::ClientSocket::New();
socket->ConnectToServer("192.168.0.1", 18944);

igtl::TransformMessage::Pointer transMsg;
transMsg = igtl::TransformMessage::New();
transMsg->SetDeviceName("Tracker");
transMsg->SetMatrix(matrix);
transMsg->Pack();
socket->Send(transMsg->GetPackPointer(),
            transMsg->GetPackSize());
```
The OpenIGTLink Protocol

- Message-based protocol
 - No session / messages are independent
 - Allows defining new message types

```
Header
Version
Type Name
Device Name
Body Size
CRC
Time Stamp

Body
IMAGE Type Body
TRANSFORM Type Body
COMMAND Type Body
```

Body Size
Protocol

- Device name
 - Multi-channel or multi-device

- Body size
 - Allows receivers to skip data, even if type is unknown.

- CRC
 - Data integrity check in the receiving program

- Time stamp
 - Required in real-time application
Standard Data Types

- Position (tracking / device positioning)
 - Position: \(x\, y\, z\)
 - Orientation (quaternion): \(ox\, oy\, oz\, w\)

- Transformation (tracking / registration)
 - Position: \(tx\, ty\, tz\)
 - Scale: \(sx\, sy\, sz\)
 - Rotation: \(nx\, ny\, nz\)
 - Translation: \(x\, y\, z\)

\[
\begin{pmatrix}
 tx & ty & tz \\
 sx & sy & sz \\
 nx & ny & nz \\
 0 & 0 & 0 & 1
\end{pmatrix}
\]
Standard Data Types

- **Image**
 - 2D / 3D
 - Scalar / vector
 - Affine transform
 - Partial volume update
Standard Data Type

Status

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Invalid packet</td>
<td>10</td>
<td>Configuration error</td>
</tr>
<tr>
<td>1</td>
<td>OK</td>
<td>11</td>
<td>Resource error</td>
</tr>
<tr>
<td>2</td>
<td>Unknown error</td>
<td>12</td>
<td>Unknown instruction</td>
</tr>
<tr>
<td>3</td>
<td>Panic</td>
<td>13</td>
<td>Device not ready</td>
</tr>
<tr>
<td>4</td>
<td>Not found</td>
<td>14</td>
<td>Manual mode</td>
</tr>
<tr>
<td>5</td>
<td>Access denied</td>
<td>15</td>
<td>Device Disabled</td>
</tr>
<tr>
<td>6</td>
<td>Busy</td>
<td>16</td>
<td>Device not present</td>
</tr>
<tr>
<td>7</td>
<td>Time out</td>
<td>17</td>
<td>Unknown device version</td>
</tr>
<tr>
<td>8</td>
<td>Overflow</td>
<td>18</td>
<td>Hardware failure</td>
</tr>
<tr>
<td>9</td>
<td>Checksum error</td>
<td>19</td>
<td>Shutdown in progress</td>
</tr>
</tbody>
</table>
Applications

• Three highlighted scenarios

 1. Prototyping clinical system
 2. Research-commercial technological transition
 3. Clinical Research Bridging
1. Prototyping Clinical System

- Connect prototype hardware / software to the system
1. Prototyping Clinical System

• Surgical manipulator integration

Drs. H. Fujimoto and J. Arata, Nagoya Institute of Technology
1. Prototyping Clinical System

- Surgical manipulator integration

![Diagram of a clinical system with components such as 3D Motion Sensor (Optotrak), Navigation System (3D Slicer), Robot (PHANToM), and Markers.]
2. Research-Commercial Transition

- Replace research prototype with commercial product prototype

OpenIGTLink (Application Layer)

Component 1

Component 2

Research Prototype

Commercial Product

TCP/IP
2. Research-Commercial Transition

- MR-guided prostate robotic intervention
 - MRI-compatible needle placement robot [Fischer 2007]
2. Research-Commercial Transition

- MR-guided prostate robotic intervention
 - 3D Slicer: research prototype
3. Clinical Research Bridging

- Export clinical data from approved system (proprietary) to research software
3. Bridging to commercial system

• BrainLab – Slicer 3
 – *BrainLab*, commercial navigation system
 – *3D Slicer*, research platform
 – *BioImage Suite* (by Xenophon Papademetris, Yale University),
 bridging VVLink and OpenIGTLink protocols
Endowments

- GE Excite MRI
- JHU robots and encoders
- IGSTK -- NDI and Micron trackers
- Robin Medical EndoScout
- NIT robots (Intelligent SI Project)
- BrainLab via BioImage Suite (Papademetris)
- 3D Slicer
- Matlab interface
Summary

- **OpenIGTLink**
 - Open, simple, extensible and reliable
 - Slicer 3, MRI, tracking device, robot, etc.
 - Used in navigation and surgical robot projects

- **Communication protocol for IGT**
 - Prototyping clinical system
 - Research-commercial technological transition
 - Clinical research bridging
Future Work

• Complete toolbox for development
 – Testing tools
 – Monitoring / analysis tools

• Logging - “Blackbox”
 – Record all events in OR

• Hard real-time capability
 – Motion compensation in radiotherapy / FUS
For more information.....

google “open igt link”