SPL 25TH Anniversary

Clare Tempany MD
April 9th 2016
Celebrate the past

MRT 1994

Ferenc & Len Holman

AMIGO 1st CASE 2011

Abraham Levy NCRR/NIH, Ferenc, Rachel Rosenblum

AMIGO wins PIE award

Steven Seltzer, Ali, Kirby, Kemal, Janice, Dan, Alex, Tina, Angela, Ferenc, Clare, Rachel
Advanced Multimodality Image Guided Operating (AMIGO) Suite

Precise Localization of Tumor Boundaries for Therapy
Clinical Testbed for P41 EB015898 (PI Tempany)
National Center for Image-Guided Therapy
AMIGO History: A dream 20 years in the making

AMIGO represents the culmination of ground-breaking research at BWH in Image-guided Therapy (IGT) dating back to the early 1990’s

1991
- BWH Image-guided Therapy program founded by Ferenc Jolesz
- Introduction of world’s first inter-operative MR magnet: MRT ‘double-donut’

1994
- BWH develops first MR-guided Focused Ultrasound (MRgFUS) system

2005
- Creation of NIH-funded National Center for Image Guided Therapy
- IGT applications expand to other advanced imaging modalities

2011
- AMIGO: First suite to offer the full array of advanced imaging modalities in one operating theater (MRI, PET/CT, 3D US, Fluoro, Angio)

Since the early/mid-1990’s, over 100 interoperative MRIs and close to 100 MRgFUS systems have been installed throughout the world

Training and technology dissemination: eg, 3D slicer

A clinical and translational test bed for multi-modal IGT
The National Center for Image Guided Therapy (NCIGT) is an NIH funded Biomedical Technology Resource Center. The NCIGT serves as a national resource for all aspects of research into medical procedures enhanced by imaging, with the common goal of providing more effective patient care.

Based at the Brigham and Women’s Hospital and Harvard Medical School in Boston, Massachusetts, the NCIGT is lead by Ferenc A. Jolesz M.D. and Clare Tempany M.D. and includes the work of more than one hundred physicians, scientists, and technical staff members.

NIH Funded BTRC 2015
P41 NIBIB - Now

Funds 45+ people
PI

• Clare Tempany, MD

Executive Director

• Tina Kapur, PhD

TRD Cores

• Prostate (Tempany)
• Neurosurgery (Golby)
• Computation (Wells)
• Guidance (Hata)
State of the Science: A perspective

✦ Great people: New grants in 2015-16
✦ 1. Lauren O’Donnell: U01CA199459-01 Open Source diffusion MRI technology for brain cancer research.
✦ 3. Natalie Agar: R01 CA 201469-01 Evaluating mass spectrometry for intraoperative tissue characterization in breast conserving surgery.

• Great work: New publications/presentations 2015-16
✦ 43 Medline Indexed Publications (17 with Collaborators)
✦ 50 Conference papers and abstracts at National and International Meetings

MAJOR IMPACT ON PATIENT CARE
1103 AMIGO patients
<table>
<thead>
<tr>
<th>Procedure Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurosurgery</td>
<td></td>
</tr>
<tr>
<td>MR and Ultrasound Guided Brain Tumor Resections</td>
<td>118</td>
</tr>
<tr>
<td>MR Guided Deep Brain Stimulation Electrodes Placements</td>
<td>28</td>
</tr>
<tr>
<td>MR Guided Transsphenoidal Resections for Pituitary Tumors</td>
<td>22</td>
</tr>
<tr>
<td>MR Guided Laser Brain Ablations</td>
<td>10</td>
</tr>
<tr>
<td>MR Guided Skull Base Surgery</td>
<td>5</td>
</tr>
<tr>
<td>MR Guided Epilepsy Electrode Placement</td>
<td>1</td>
</tr>
<tr>
<td>AVM Repair using Angiography</td>
<td>1</td>
</tr>
<tr>
<td>Neurosurgery- Other</td>
<td>2</td>
</tr>
<tr>
<td>Head and Neck Surgery</td>
<td></td>
</tr>
<tr>
<td>MR Guided Cryotherapy of Head & Neck</td>
<td>10</td>
</tr>
<tr>
<td>Parathyroidectomies/Hemithyroidectomies</td>
<td>5</td>
</tr>
<tr>
<td>MR Guided Biopsy of Head & Neck</td>
<td>5</td>
</tr>
<tr>
<td>PET/CT Guided Biopsy of Tongue/Mouth/Neck</td>
<td>3</td>
</tr>
<tr>
<td>MR Guided Face Transplant Intervention</td>
<td>2</td>
</tr>
<tr>
<td>MR Guided Nerve Ablation</td>
<td>1</td>
</tr>
<tr>
<td>Skeletal Biopsy & Ablation</td>
<td></td>
</tr>
<tr>
<td>MR Guided Cryoablation of Spine Tumor</td>
<td>8</td>
</tr>
<tr>
<td>MR Guided Cryoablation of Degenerative Spine Disease</td>
<td>4</td>
</tr>
<tr>
<td>PET/CT Guided Biopsy of Spine Tumor</td>
<td>3</td>
</tr>
<tr>
<td>MR Guided Biopsy of Femoral Tumor</td>
<td>1</td>
</tr>
<tr>
<td>Musculoskeletal MR Guided Cryoablation (Elbow)</td>
<td>1</td>
</tr>
<tr>
<td>Thoracic Surgery, Biopsy, Ablation</td>
<td></td>
</tr>
<tr>
<td>Video Assisted Thoracoscopic surgeries (iVats)</td>
<td>30</td>
</tr>
<tr>
<td>Breast Conserving Surgery</td>
<td>23</td>
</tr>
<tr>
<td>PET/CT Guided Lung Biopsies</td>
<td>18</td>
</tr>
<tr>
<td>Cardiac EP Ablations</td>
<td>7</td>
</tr>
<tr>
<td>PET/CT Guided Microwave Ablations of Lung Tumors</td>
<td>7</td>
</tr>
<tr>
<td>PET/CT Guided Cryoablation of Metastatic Tumors</td>
<td>5</td>
</tr>
<tr>
<td>PET/CT Guided Cryoablutions of Lung or Rib Tumors</td>
<td>3</td>
</tr>
<tr>
<td>MR Guided Cryoablation of Metastatic Tumors</td>
<td>1</td>
</tr>
<tr>
<td>Abdominal Tumor Ablation & Biopsy</td>
<td></td>
</tr>
<tr>
<td>MRI Guided Cryoablations of Liver or Kidney Tumors</td>
<td>181</td>
</tr>
<tr>
<td>PET/CT Guided Microwave Ablations of Liver or Kidney Tumors</td>
<td>47</td>
</tr>
<tr>
<td>PET/CT Guided Cryoablutions of Liver or Kidney Tumors</td>
<td>39</td>
</tr>
<tr>
<td>MR Guided Biopsies of Liver or Kidney Tumors</td>
<td>35</td>
</tr>
<tr>
<td>PET/CT Guided Cryoablation of Retroperitoneal Mets</td>
<td>2</td>
</tr>
<tr>
<td>MR Guided Cryoablation and Biopsy of Retroperitoneal Mets</td>
<td>1</td>
</tr>
<tr>
<td>CT Guided Electroporation of Liver Metastases</td>
<td>1</td>
</tr>
<tr>
<td>PET/CT Guided Adrenalectomy</td>
<td>1</td>
</tr>
<tr>
<td>Pelvic Biopsy, Ablation, Brachytherapy</td>
<td></td>
</tr>
<tr>
<td>MR Guided Prostate Biopsies</td>
<td>358</td>
</tr>
<tr>
<td>MR and Ultrasound Guided Gynecologic Cancer Brachytherapy</td>
<td>92</td>
</tr>
<tr>
<td>MR and Ultrasound Guided Prostate Brachytherapy</td>
<td>8</td>
</tr>
<tr>
<td>MR Guided Cryoablations of Prostate Tumors</td>
<td>8</td>
</tr>
<tr>
<td>MR Guided Biopsy & Cryoablation of Pelvis</td>
<td>2</td>
</tr>
<tr>
<td>MR Guided Biopsy of Penile Tumor, Perirectal Mass</td>
<td>2</td>
</tr>
<tr>
<td>PET/CT Guided Penile Biopsy</td>
<td>1</td>
</tr>
<tr>
<td>PET/CT Guided Cryoablation of Pelvic Tumor</td>
<td>1</td>
</tr>
</tbody>
</table>

http://ncigt.org/pages/AMIGO
http://ncigt.org/amigoprocurences
https://www.youtube.com/watch?v=HNLB5Xcf3Co
Advances in imaging technologies used in oncology

Adapted from Condeelis J, Weissleder R Cold Spring Harb Perspect Biol 2010;2:a003848

©2010 by Cold Spring Harbor Laboratory Press

Courtesy of Annick D. Van den Abbeele, MD
Imaging Pipeline

Images acquired

Image Processing

Data results/Display

1072 Procedures
08/31/2011-03/11/2016

- Brain: 182 (17%)
- Thorax: 94 (9%)
- Abdomen: 299 (28%)
- Pelvis: 458 (43%)
3D Slicer

• Medical image analysis and visualization platform
• Since 1997
• Multi million investment by NIH
• Professionally engineered core
• 1,000+ analysis functions
• Accelerating number of downloads
 • 1000 per week in 2015
 • 550 per week in 2012

www.slicer.org
MR guided prostate interventions at BWH

1995 MR guided prostate biopsy Transgluteal n=3 BWH/MGH first

1997-2007 MR guided brachytherapy
Transperineal in bore 0.5T n=70 BWH first

1999-2007 MR guided prostate biopsy
Transperineal in Bore n=50 BWH first

2001: 1R01AG019513-01 (PI Tempany)
MR GUIDED PROSTATE CANCER DIAGNOSIS AND BRACHYTHERAPY n= 500

2005-present P41 NCRR/NCI/NIBIB(Jolesz/Tempany-PROSTATE CORE
2006: RO1 (Tempany) BRP NCI

Now 18 years later MR targeted prostate biopsy is a routinely performed worldwide
Multiple approaches (TR/TP, in bore/out of bore), multiple devices/vendors, devices
BWH 2014 MR guided prostate biopsy at 3T (wide bore-70 cm)

- Direct Transperineal sampling based on pre-biopsy MRI (Ecoil at 3T) to define targets
- Target sampling with 3D slicer, under IVCS- out patient
- Target MR abnormal areas
 - T2W/ADC/DCE
 - Site specific pathology

AMIGO

3T MR

PET/CT
Smart Template and robot for MRI-guided Prostate Biopsy

Intervention Stirrup Manual Template Smart Template

Clinical setup at AMIGO

- No human communication error
- Unrestricted needle positioning

Overview of MR-US “fusion” biopsy systems
MR targeted US guided prostate biopsy

Artemis

Koelis
http://www.koelis.com/

Uro nav
Look to the future

• Big Data, Deep Learning, Machine learning
 ✹ Tools: Watson, 3DSlicer, MR fingerprinting

• Challenges and opportunities
 ✹ Data sharing vs Research Parasites vs Symbiotic/Collaborative*
 ✹ 2 new NIH initiatives

“Medicine is too important to be left to Doctors”
 ✹ Issac Kohane P41 directors meeting March 14th 2016
 ✹ TED MED talk 2013

*D. Longo & J. Drazen NEJM
• Taichman DB, Backus J, Baethge C, et al. Sharing clinical trial
 data — a proposal from the International Committee of Medical
Look to the future: Mega Trends

• High value-Low cost
 ✷ Value-added: Experience/quality
 ✷ Market differentiators

• Aging baby boomers

• Patient’s driving the decisions: increased co-pays
Molecular imaging framework for AMIGO

Voxel specific tissue sampling for pathological validation of imaging

Supplemented with hand-held Probes

In vivo imaging & spectroscopy

MRI

PET

Pathology

Ex vivo spectroscopy

Navigation

A validation of multimodal imaging MR-PET registration
Role of imaging

IMAGING

Quant Imaging

Phenome

Genome

GWAS

Clinical

Drug Development

Therapy Planning

Courtesy Ron Kikinis
A trans-NIH initiative established to enable biomedical research as a digital research enterprise, to facilitate discovery and support new knowledge, and to maximize community engagement.

4 major aims

- To facilitate broad use of biomedical digital assets by making them discoverable, accessible, and citable.
- To conduct research and develop the methods, software, and tools needed to analyze biomedical Big Data.
- To enhance training in the development and use of methods and tools necessary for biomedical Big Data science.
- To support a data ecosystem that accelerates discovery as part of a digital enterprise.
Cancer Moon shot
NCI 2016

• Biden’s $1B initiative
 ✷ $195 M in 2016
 ✷ $755 M in 2017-$680 to NCI/ $75M to FDA & $50 to VA

• NCI
 ✷ Blue ribbon panel (n=28)
 ▪ Scientific experts, cancer leaders, and patient advocates
 ▪ Co-Chairs: Tyler Jacks (Koch/MIT), Eliz Jaffee (Kimmel/JHU) and Dinah Singer (NCI acting DD)
 ✷ Report to NCAB 8/16.
 ✷ FOA 8-10/16
 ✷ Receipt of apps 1-3/17
Themes

- Highly sensitive approaches to detection
- Enhanced data sharing
- Single cell genomic profiling of cancer cells and cells in micro-environment.
- Cancer Vaccines
- Advances in Immunotherapy
- Pediatric cancers
Congratulations and Many Thanks

Looking forward to next 25!