Three ways to use the NA-MIC kit

Sonia Pujol, PhD
Brigham and Women’s Hospital,
Harvard University
The NA-MIC Kit

3D Slicer VTK ITK Nrrd KWidgets

CMake CTest Dart Batch Make XNAT
3D Slicer

- Open-source application available for Windows, Linux and Mac
- More than 2.8 million lines of code
- Neuroscience and Image-Guided Therapy

Image courtesy of Marianna Jakab, SPL
3D Slicer History

- Started in 1997 between the Surgical Planning Lab (Harvard) and the CSAIL (MIT)

Image Courtesy of the CSAIL, MIT
3D Slicer History

- Started in 1997 between the Surgical Planning Lab (Harvard) and the (CSAIL) MIT

- 2010: Multi-institution effort to share the latest advances in image analysis with clinicians and scientists
3D Slicer Geography

- **Open-source** platform developed on a national scale
- Supported by the **National Institutes of Health** consortia which include
 - National Alliance for Medical Image Computing
 - Neuroimage Analysis Center
 P.I. Prof. Ron Kikinis, MD,
 Director of the Surgical Planning Lab
Three ways to use the NA-MIC kit
The NA-MIC kit from three user perspectives

- Clinical researchers
- Biomedical engineers
- Algorithm developers
Clinical researchers

Interact in 3D to enhance data interpretation
Visualize

• User-driven views of anatomical structures
• Overlay between 2D grey-levels images and 3D anatomical structures
• Intuitive interaction with the 3D models
Biomedical Engineers

Extract relevant information from complex data
Analyze

- Advanced analysis of complex data
- Multimodal data fusion
- Clinical parameters extraction

Image courtesy of Mahnaz Maddah, MIT
Analyze

Statistical Analysis of Anatomy from Medical Images

Courtesy of Tom Fletcher, University of Utah.
Algorithm Developers

\[
\ln p(X | \pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_k N(x_n | \mu_k, \Sigma_k) \right)
\]

Develop plug-ins to extend image analysis capabilities

#include "itkDiscreteGaussianImageFilter.h"

int main(int argc, char * argv[])
{
 PARSE_ARGS;
 typedef itk::Image< short, 3 > ImageType;
 typedef itk::ImageFileReader< ImageType > ReaderType;
 typedef itk::ImageFileWriter< ImageType > WriterType;
 ReaderType::Pointer reader = ReaderType::New();
 WriterType::Pointer writer = WriterType::New();
 reader->SetFileName(FilterInputVolume.c_str());
 writer->SetFileName(FilterOutputVolume.c_str());
 typedef itk::DiscreteGaussianImageFilter< ImageType, ImageType > FilterType;
 FilterType::Pointer filter = FilterType::New();
}
Create

• Integrate external executables with the Slicer3 platform
• Develop plug-ins in C++, Tcl or Python
• Build upon the NA-MIC kit to meet your scientific goals
Clinical researchers
Biomedical engineers
Algorithm developers

Translate techniques into skills
Slicer3: A Technology Delivery Platform

- Integrated solution for delivering technological breakthroughs to the clinical research community

- Practical aspects: Open-source and available on all major computer platforms
Conclusion

- An end-user application for image analysis
- An open-source environment for software development
- A technology delivery platform for community breakthroughs