3D Slicer Tutorial: Prototyping Surgical Robot System Using ROS and 3D Slicer

Junichi Tokuda¹, Tobias Frank², Axel Krieger³, Simon Leonard⁴, Niravkumar Patel⁵

¹ Brigham and Women’s Hospital
² Gottfried Wilhelm Leibniz Universität Hannover
³ Children’s National Health System
⁴ Johns Hopkins University
⁵ Worcester Polytechnic Institute
Background

• Growing Interest in Robot Assisted Interventions
 – Robot-assisted laparoscopy
 – Robotic catheter systems
 – Robotic radiosurgery, etc.

• R&D of Surgical Robot System
 – Image processing and visualization for surgical planning
 – Kinematics and motion planning for robot control
 – Device management and control

➡ Requires a wide range of tools and methods developed in robotics and medical image computing fields
Background (2)

- Common research platforms
 - Medical Image Computing
 - 3D Slicer
 - MITK
 - NifTK
 - OsiriX…
 - Medical Robotics
 - da Vinci Toolkit (dVRK)
 - Raven II
 - KUKA Lightweight Robot

→ Need for a bridge between ROS and OpenIGTLink
Objective of This Tutorial

• Prototype surgical robot system using widely-available software and hardware
 – 3D Slicer as planning interface
 – Lego Mindstorms as robot hardware
 – Robot Operating System (ROS) as robot control software

• Through this tutorial, you can:
 – Learn software architecture of surgical robot systems
 – Acquire hands-on experience of software-hardware integration for medical robotics
Prerequisite

- 3D Slicer Version 4.6 or later
- Lego Mindstorms EV3 with WiFi dongle
- ev3dev – Debian Linux for Mindstorms EV3
 - http://www.ev3dev.org
- ROS-IGTL-Bridge
 - https://github.com/openigtlink/ROS-IGTL-Bridge
Architecture

Planning Workstation

3D Slicer

OpenIGTLink over TCP/IP

EV3 Brick with ev3dev

ROS-IGTL-Bridge

Robot control node

ROS network
Tasks in Each Component

- **3D Slicer**
 - Medical Image Display
 - Segmentation
 - Procedure Planning
 - Pre/Intra Image Registration
 - Tracker support

- **OpenIGTLink**
 - Communication Protocol
 - Transformation manager

- **ROS**
 - Robot Control
 - Path Planning
 - Image Libraries
 - Sensor Integration
 - Simulation

- **ROS-IGTL-Bridge**
 - Convert ROS topics to OpenIGTLink
 - Transformation manager

- **Controller Node**
 - Control actuators
Step 1: Preoperative Planning

• Pre-operative MRI Brain Scan
• Mark three distinct points on brain for registration in Slicer
• Plan cut in Brain Stem for tumor removal in Slicer
Step 2: Pre/Intraoperative Registration

- Place scalpel over three distinct points for registration
- Send registration points through ROS to Slicer
Step 2: Pre/Intraoperative Registration (2)

• Perform registration in Slicer

• Send target points for cut to ROS
Step 3: Robotic Procedure

• Robot path is planned and sent to robot

• Robotic traces the planned trajectory
Conclusion

• Integration of 3D Slicer and ROS
 – Provide access to resources developed in two communities
 – Allows quick prototyping of surgical robot systems
 – Thanks to a wide variety of hardware supported by ROS, the system can be scaled up easily without changing the system architecture