Language and verbal memory deficits are among the most striking in schizophrenia (Saykin et al., 1991, 1994; Adams et al., 1993; Kareken et al., 1996; Nestor et al., 1997). Functional studies have also shown abnormal activation in frontal and temporal cortices during linguistic tasks (Yurgelun-Todd 1996, Stevens et al., 1996, Ragland et al., 2001; Heckers et al., 1998). Many theories point to connection faults between these regions, namely Broca’s and Wernicke’s areas (Crow 1998; Ford et al., 2002). These connection faults are thought to be accounted for by neuroanatomical abnormalities in white matter in schizophrenia. We chose to explore these areas, specifically the inferior frontal gyrus (IFG) and the superior temporal gyrus (STG), and their connections travelling through the arcuate fasciculus and the inferior occipito-frontal fasciculus (IOFF) (see Figure 1).

Diffusion Tensor Imaging (DTI) is a relatively new tool used to investigate white matter tracts because of its ability to distinguish between tissue types by characterizing water diffusion. Extraction and measurement of these white matter tracts, however, remains technically challenging. By using our novel method of stochastic tractography using DTI scans acquired at our facilities, we sought to recreate and investigate the arcuate fasciculus and IOFF in schizophrenia.

METHODS

Subjects

23 male chronic schizophrenics and 23 male normal controls, group matched for age, right-handedness, IQ, and parental socioeconomic status.

Data Acquisition

Magnetic Resonance Images (MRIs) were acquired on a 3.0 Tesla GE scanner. Structural MRIs were obtained with the following parameters: TR 7.48 ms, TE 3 ms, FOV 256 mm, 1 mm slice thickness, 176 axial slices. Diffusion Tensor MRIs were obtained with the following parameters: 51 directions, TR 17000 ms, TE 78 ms, FOV 24 cm, 144x144 encoding steps, 1.7 mm slice thickness, 85 axial slices.

Regions of Interest

Automatic Freesurfer (http://surfer.nmr.mgh.harvard.edu/) segmentations were run on structural MRIs, from which the IFG, STG, and occipital lobe were extracted and measured (Figure 2).

Non-linear co-registration of structural and DTI scans was then performed to convert the regions of interest (ROIs) to DTI space.

Stochastic Tractography

A new method of stochastic tractography (Figure 3) was employed to extract IFG-STG (arcuate) (Figure 4a) and IFG-occipital (IOFF) (Figure 4b) connections.

Mean Fractional Anisotropy (FA) along the two extracted fibers (Figure 5) was calculated and compared between groups.

The significant decrease in left IFG volume in schizophrenia patients indicates that portions of language-related cortices are affected in patients when compared to controls. By using our stochastic tractography method, we were able to model diffusion uncertainty which allowed us to track through regions of low anisotropy where streamline methods typically fail (Figure 3). The results demonstrate the ability of the stochastic tractography method to extract tracts through two distinct networks, the IFG-temporal and the IFG-occipital. Our significant finding in left IFG-occipital connections suggests decreased integrity of fiber tracts involved in language processing in schizophrenia patients when compared to healthy controls. Correlations between volume and connectivity, however, were not significant, indicating that volume loss and connectivity faults are two independent processes.

REFERENCES

