Mathematical and physical foundations of DTI

Anastasia Yendiki, Ph.D.
A. A. Martinos Center for Biomedical Imaging
Massachusetts General Hospital
Harvard Medical School

41th Annual Meeting of the Society for Neuroscience
November 11th, 2011
Washington, DC
White-matter imaging

- Axons measure ~µm in width
- They group together in bundles that form the white matter
- We cannot image individual axons but we can image bundles with diffusion MRI
- Useful in studying neurodegenerative diseases, stroke, aging, development...

From Gray's Anatomy: IX. Neurology
From the National Institute on Aging
Diffusion in brain tissue

- Differentiate between tissues based on the diffusion (random motion) of water molecules within them

 - Gray matter: Diffusion is unrestricted ⇒ isotropic

 - White matter: Diffusion is restricted ⇒ anisotropic
Diffusion MRI

- Magnetic resonance imaging can provide “diffusion encoding”

- Magnetic field strength is varied by gradients in different directions

- Image intensity is attenuated depending on water diffusion in each direction

- Compare with baseline images to infer on diffusion process
How to represent diffusion

- At every voxel we want to know:
 - Is this in white matter?
 - If yes, what pathway(s) is it part of?
 - What is the orientation of diffusion?
 - What is the magnitude of diffusion?
- A grayscale image cannot capture all this!
Tensors

- One way to express the notion of “direction” mathematically is by a tensor D
- A tensor is a 3x3 symmetric, positive-definite matrix:

\[
D = \begin{bmatrix}
d_{11} & d_{12} & d_{13} \\
d_{12} & d_{22} & d_{23} \\
d_{13} & d_{23} & d_{33}
\end{bmatrix}
\]

- D is symmetric 3x3 \Rightarrow It has 6 unique elements
- Suffices to estimate the upper (lower) triangular part

Anastasia Yendiki
The matrix D is positive-definite \Rightarrow
- It has 3 real, positive eigenvalues λ_1, λ_2, $\lambda_3 > 0$.
- It has 3 orthogonal eigenvectors e_1, e_2, e_3.

\[D = \lambda_1 e_1 \cdot e_1' + \lambda_2 e_2 \cdot e_2' + \lambda_3 e_3 \cdot e_3' \]

\[e_1 = \begin{bmatrix} e_{1x} \\ e_{1y} \\ e_{1z} \end{bmatrix} \]
Physical interpretation

- Eigenvectors express diffusion direction
- Eigenvalues express diffusion magnitude

Isotropic diffusion: \[\lambda_1 \approx \lambda_2 \approx \lambda_3 \]
Anisotropic diffusion: \[\lambda_1 >> \lambda_2 \approx \lambda_3 \]

- One such ellipsoid at each voxel: Likelihood of water molecule displacements at that voxel
Diffusion tensor imaging

Image:
An intensity value at each voxel

Tensor map:
A tensor at each voxel

Direction of eigenvector corresponding to greatest eigenvalue
Diffusion tensor imaging

Image:
An intensity value at each voxel

Tensor map:
A tensor at each voxel

Direction of eigenvector corresponding to greatest eigenvalue
Red: L-R, Green: A-P, Blue: I-S
Scalar diffusion measures

Mean diffusivity (MD): Mean of the 3 eigenvalues

\[\text{MD}(j) = \frac{\lambda_1(j) + \lambda_2(j) + \lambda_3(j)}{3} \]

Fractional anisotropy (FA): Variance of the 3 eigenvalues, normalized so that \(0 \leq \text{FA} \leq 1\)

\[\text{FA}(j)^2 = \frac{3}{2} \left(\frac{\left(\lambda_1(j) - \text{MD}(j)\right)^2 + \left(\lambda_2(j) - \text{MD}(j)\right)^2 + \left(\lambda_3(j) - \text{MD}(j)\right)^2}{\lambda_1(j)^2 + \lambda_2(j)^2 + \lambda_3(j)^2} \right) \]
More summary measures

- **Axial diffusivity:** Greatest eigenvalue
 \[
 AD(j) = \lambda_1(j)
 \]

- **Radial diffusivity:** Average of 2 lesser eigenvalues
 \[
 RD(j) = \frac{[\lambda_2(j) + \lambda_3(j)]}{2}
 \]

- **Inter-voxel coherence:** Average angle b/w the primary eigenvector at some voxel and the primary eigenvector at the voxels around it
Beyond the tensor

- The tensor is an imperfect model: What if more than one major diffusion direction in the same voxel?

- High angular resolution diffusion imaging (HARDI)
 - A mixture of the usual ("rank-2") tensors [Tuch’02]
 - A tensor of rank > 2 [Frank’02, Özarslan’03]
 - An orientation distribution function [Tuch’04]
 - A diffusion spectrum (DSI) [Wedeen’05]

- More parameters at each voxel ⇒ More data needed
Models of diffusion

Diffusion spectrum (DSI):
Full distribution of orientation and magnitude

Orientation distribution function (Q-ball):
No magnitude info, only orientation

Ball-and-stick:
Orientation and magnitude for a small number of anisotropic compartments

Tensor (DTI):
Single orientation and magnitude
Example: DTI vs. DSI

From Wedeen et al., Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging, MRM 2005

Anastasia Yendiki
Data acquisition

- Remember: A tensor has six unique parameters

\[
D = \begin{bmatrix}
 d_{11} & d_{12} & d_{13} \\
 d_{12} & d_{22} & d_{23} \\
 d_{13} & d_{23} & d_{33}
\end{bmatrix}
\]

- To estimate six parameters at each voxel, must acquire at least six diffusion-weighted images

- HARDI models have more parameters per voxel, so more images must be acquired
Spin-echo MRI

- Use a 180° pulse to refocus spins:

- Apply a field gradient G_y for location encoding

Measure transverse magnetization at each location -- depends on tissue properties (T_1, T_2)
Diffusion-weighted MRI

- Apply two gradient pulses:

 $90^\circ \quad G_y \quad 180^\circ \quad G_y \quad \text{acquisition}$

- **Case 1:** If spins are not diffusing

 $y = y_1, y_2 \quad \Rightarrow \quad y = y_1, y_2$

 $90^\circ \quad G_y \quad 180^\circ \quad G_y$

 No displacement in $y \Rightarrow$
 No dephasing \Rightarrow
 No net signal change

Anastasia Yendiki
Diffusion-weighted MRI

- Apply two gradient pulses:

\[y = y_1, y_2 \rightarrow y = y_1 + \Delta y_1, y_2 + \Delta y_2 \]

- Case 2: If spins are diffusing

Displacement in \(y \) ⇒ Dephasing ⇒ Signal attenuation
Choice 1: Directions

- Diffusion direction || Applied gradient direction
 \Rightarrow Maximum signal

- Diffusion direction \perp Applied gradient direction
 \Rightarrow No signal

- To capture all diffusion directions well, gradient directions should cover 3D space uniformly
How many directions?

- Acquiring more directions leads to:
 - More reliable estimation of tensors
 - Increased imaging time \Rightarrow Subject discomfort, more susceptible to artifacts due to motion, respiration, etc.

- DTI:
 - Six directions is the minimum
 - Usually a few 10’s of directions
 - Diminishing returns after a certain number \cite{Jones2004}

- HARDI/DSI:
 - Usually a few 100’s of directions
Choice 2: The b-value

- The b-value depends on acquisition parameters:
 \[b = \gamma^2 G^2 \delta^2 (\Delta - \delta/3) \]
 - \(\gamma \) the gyromagnetic ratio
 - \(G \) the strength of the diffusion-encoding gradient
 - \(\delta \) the duration of each diffusion-encoding pulse
 - \(\Delta \) the interval between diffusion-encoding pulses
How high b-value?

- Increasing the b-value leads to:
 + Increased contrast b/w areas of higher and lower diffusivity in principle
 - Decreased signal-to-noise ratio ⇒ Less reliable estimation of tensors in practice

- DTI: $b \sim 1000 \text{ sec/mm}^2$
- HARDI/DSI: $b \sim 10,000 \text{ sec/mm}^2$

- Data can be acquired at multiple b-values for trade-off
- Repeat same acquisition several times and average to increase signal-to-noise ratio
Looking at diffusion data

A diffusion data set consists of:
- A set of non-diffusion-weighted a.k.a. “baseline” a.k.a. “low-b” images (b-value = 0)
- A set of diffusion-weighted (DW) images acquired with different gradient directions $g_1, g_2, ...$ and b-value > 0
- The diffusion-weighted images have lower intensity values
From image to tensor

- $f_j^{b,g} = f_j^0 e^{-b\cdot D_j \cdot g}$
 where the D_j the diffusion tensor at voxel j

- Design acquisition:
 - b the diffusion-weighting factor
 - g the diffusion-encoding gradient direction

- Reconstruct images from acquired data:
 - $f_j^{b,g}$ image acquired with diffusion-weighting factor b and diffusion-encoding gradient direction g
 - f_j^0 “baseline” image acquired without diffusion-weighting ($b=0$)

- Estimate unknown diffusion tensor D_j
Field inhomogeneities

- Causes:
 - **Scanner-dependent** (imperfections of main magnetic field)
 - **Subject-dependent** (changes in magnetic susceptibility in tissue/air interfaces)

- Results: Signal loss in interface areas, geometric distortions
Eddy currents

- Fast switching of diffusion-encoding gradients induces eddy currents in conducting components
- Eddy currents lead to residual gradients that shift the diffusion gradients
- The shifts are direction-dependent, i.e., different for each DW image
- Results: geometric distortions

From Le Bihan et al., Artifacts and pitfalls in diffusion MRI, JMRI 2006
Data analysis steps

- Pre-process images to reduce distortions
 - Either register distorted DW images to an undistorted (non-DW) image
 - Or use information on distortions from separate scans (field map, residual gradients)

- Fit a diffusion model at every voxel
 - DTI, DSI, Q-ball, ...

- Do tractography to reconstruct pathways and/or

- Compute measures of anisotropy/diffusivity and compare them between populations
 - Voxel-based, ROI-based, or tract-based statistical analysis