

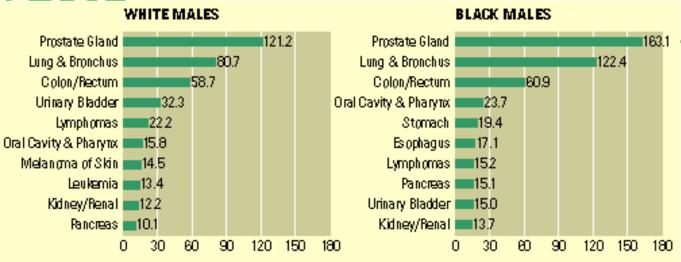
Quantitiative MRI of prostate cancer as a biomarker and guide for treatment

Fiona Fennessy, MD PhD (PI)

Sandeep Gupta, PhD

Andrey Fedorov, PhD

Michelle Hirsch, MD


Robert Mulkern, PhD

Ehud Schmidt, PhD

Clare Tempany, MD

ODI

Clinical problem: Localized Prostate Cancer

NCI: Age-Adjusted Cancer Incidence Rates, 1987-1991 (per 100,000)

	New cases	Deaths
2006	203,415	28,372
2010	217,730	32,050
2015	450,000	

Present: "Radical" treatment of the whole gland, watchful waiting

Future: Treatment tailored to individual patient

Role for MRI: Tumor detection, treatment planning & guidance, assessment of volumetric and functional response to therapy.

Clinical rationale

To develop quantitative pixel-wise tumor maps for focal prostate cancer

- 1. Biomarker guide for focal therapy planning
- 2. Monitor tumor response in "low risk" localized prostate cancer group, post focal therapy

(Determine "expected" criteria for post-ablation margin and surrounding tissue, and determine if differentiation of residual tumor from peri-ablation enhancement possible using MP mapping)

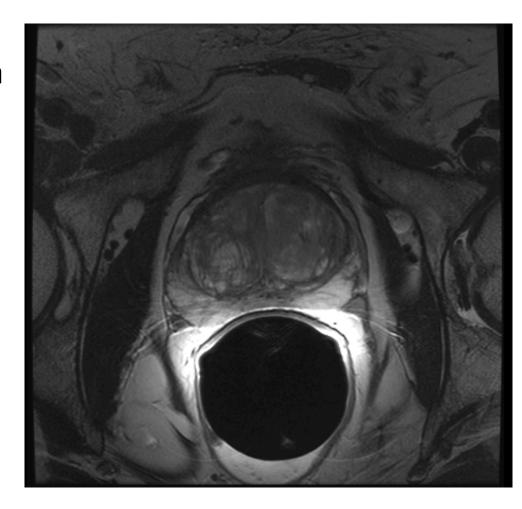
3. Monitor tumor response in "high risk" localized prostate cancer group, post neoadjuvant ADT

(Is multiparametric imaging (with the focus on DCE MRI) a predictor of pathological response?)

Specific aims

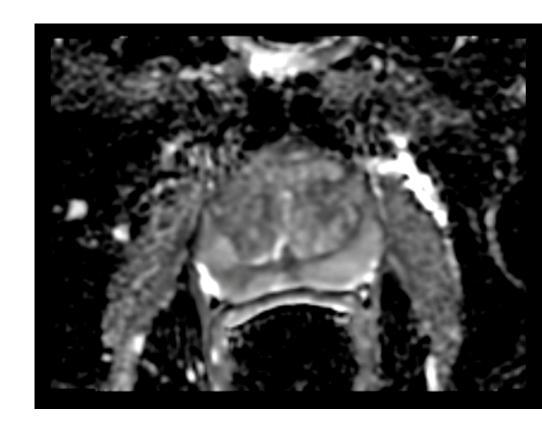
- 1. To optimize prostate MR analysis tools.
- 2. To clinically validate prostate MR quantitative analysis tools
- 3. To determine the clinical use of the analysis tools as a biomarker guide for targeted therapy and as a surrogate for disease recurrence in low-risk prostate cancer patients
- 4. To determine the clinical use of the analysis tools in evaluating tumor response to treatment with neoadjuvant androgen deprivation therapy (ADT) in patients with high-risk prostate cancer

MRI imaging protocol


- 3T GE magnet
- Medrad air-inflated endorectal coil
- Sequences include
 - T2w
 - T1w (pre- and post-contrast)
 - T1 mapping (variable FA and/or variable TR)
 - DCE (~4.6 sec time resolved)
 - DWI (b0-500 and b0-1400)
 - ADC maps calculated by scanner software

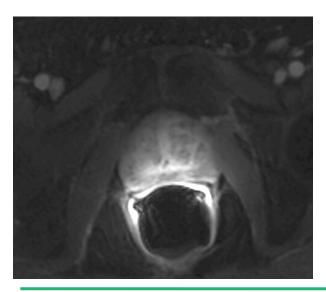
T2w MRI

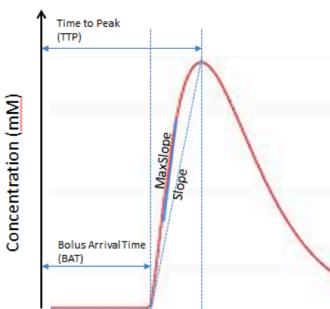
- FRFSE sequence
- ~ 0.4x0.4x3 mm resolution
- Tumor cellularity/ extracellular water
- Qualitative assessment only



DWI MRI, ADC maps

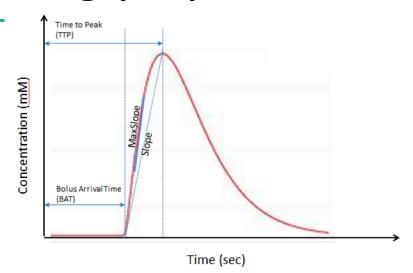
- Hypercellularity, enlargement of the cell nuclei
- ~0.7x0.7x3 mm
- b0-500, b0-1400

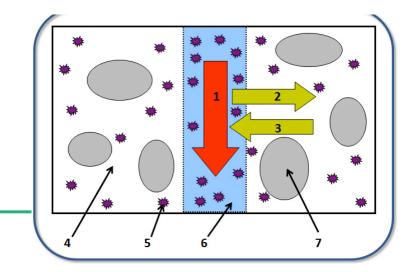




Dynamic Contrast Enhanced (DCE) MRI

- ~0.9x0.9x6 mm, ~4.6 sec/frame
- Microvascularity of the tumor
- Qualitative assessment used in clinic
- Can be used for modeling and quantitative parameter estimation





DCE post-processing (GE)

- "Empirical" parameters
 - Maximum slope of the uptake curve
 - Area under the curve (AUC)
 - Time to peak (TTP)
- "Derived" parameters
 - 2-compartment General Kinetic Model (Generalized Tofts-Kermode Model)
 - Extravascular extracellular space (ve), transfer rate from plasma to EES (Ktrans)

$$\frac{dC_{\rm tiss}(t)}{dt} = K^{\rm trans}C_{\rm p}(t) - k_{\rm ep}C_{\rm tiss}(t)$$

DCE post-processing prerequisites

- "Empirical" and "Derived" parameters
 - Conversion of the signal intensity into concentration units
- "Derived" parameters
 - Estimation of Arterial Input Function (AIF)

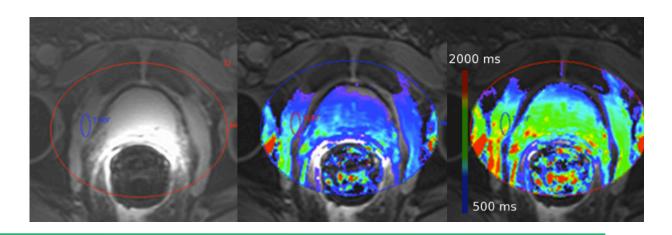

T1 mapping for PCa DCE

$$\frac{dC_{\text{tiss}}(t)}{dt} = K^{\text{trans}}C_{\text{p}}(t) - k_{\text{ep}}C_{\text{tiss}}(t)$$

$$\frac{SIpre}{SI(t)} = \frac{(1 - e^{-TR/T_{1pre}})}{1 - \cos\alpha e^{-TR/T_{1pre}}} \frac{1 - \cos\alpha e^{-TR/T_{1}(t)}}{(1 - e^{-TR/T_{1}(t)})}$$

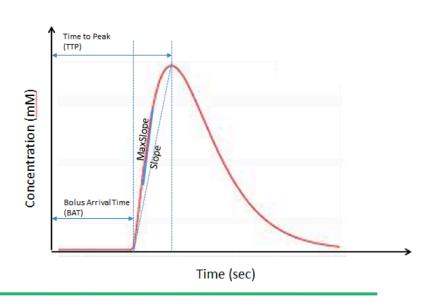
Conventional approaches:

- Fixed T1 value for the whole gland
- Variable FA T1 mapping
 - Large errors in prostate at 3T



T1 mapping: alternative approaches

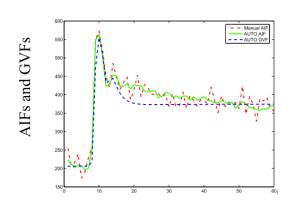
- Variable TR sequence
 - T1 mapping approach insensitive to B1 field inhomogeneity
- Reference-corrected variable FA approach

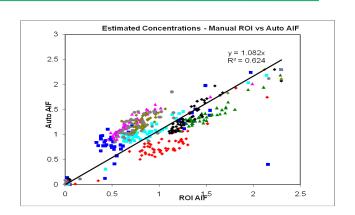


Arterial Input Function

- Required for determination of rate of change of CA concentration in plasma
- Choices for AIF selection
 - Patient-specific (manual/automatic/automated)
 - Population-averaged
 - Model-based

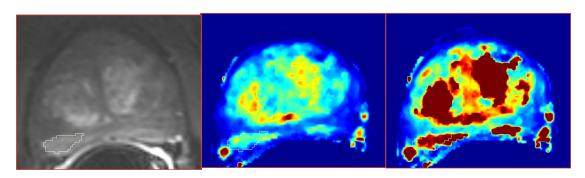
$$C_{\mathrm{tiss}}(t) = K^{\mathrm{trans}}C_{\mathrm{p}}(t) \otimes \exp(-k_{\mathrm{ep}}t)$$

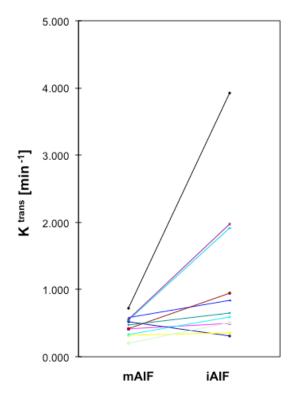




Automatic estimation of AIF

- AIF Shape prior Gamma-Variate Function
- Anatomical prior on voxel location
- Time- and space-domain filtering


Zhu et al. Automated determination of arterial input function for DCE-MRI of the prostate. In: Proc. SPIE Med Imag. Vol. 7963; 2011.



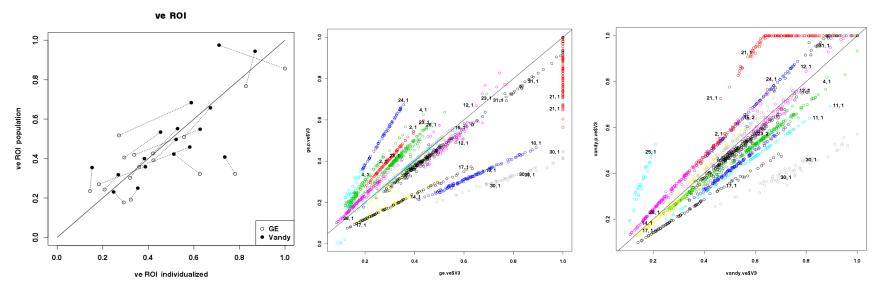
Automatic vs model AIF

 Large differences observed between parameters derived using model and individualized AIF

Fennessy et al, ISMRM 2011

Comparison of individualized AIF estimation methods

- Joint work with Vanderbilt QIN group (Tom Yankeelov)
- 17 patients with biopsy/prostatectomyconfirmed PCa
- Evaluate choices:
 - iAIF using one of the two methods
 - Population-averaged AIF

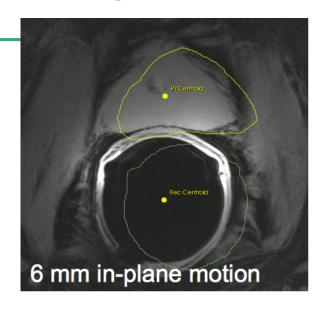

Zhu et al. Automated determination of arterial input function for DCE-MRI of the prostate. In: Proc. SPIE Med Imag. Vol. 7963; 2011.

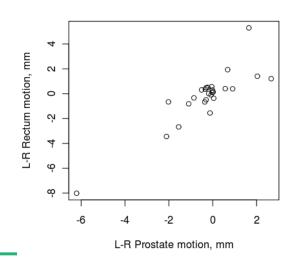
Li et al. A novel AIF tracking method and comparison of DCE-MRI parameters using individual and population-based AIFs in human breast cancer. Phys Med Biology. 2011;56(17):5753-69.

Comparison of individualized AIF estimation methods

- ROI-based vs pixel-wise analysis
- iAIF-pAIF consistency does not imply correct results!

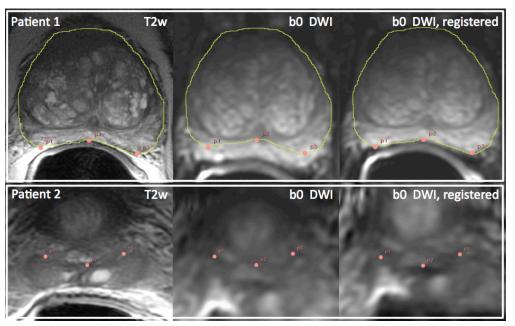
Co-registration

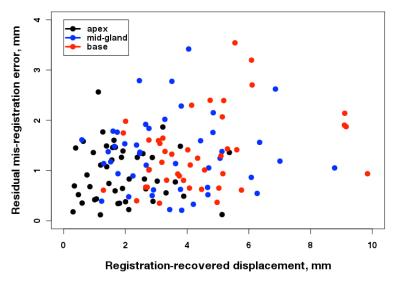

- Required for joint quantitative analysis of mpMRI
 - Same study, Inter-sequence co-registration
 - Inter-study co-registration
 - Co-registration with pathology



mpMRI inter-sequence co-registration

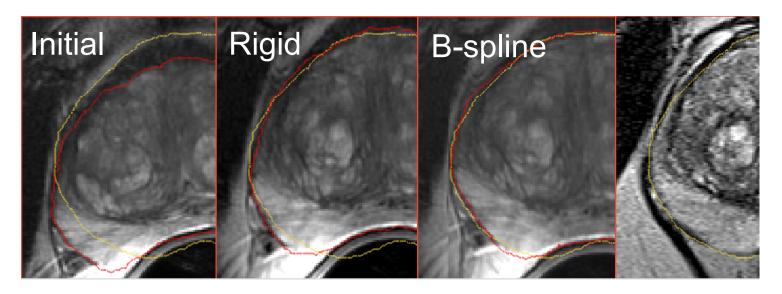
- 26 mpMRI exams analyzed retrospectively
- In-plane motion between pre- and post-contrast T1w study (10-20 min apart) quantified
- 4 patients motion > 3 mm
- Rigid registration to recover (3D Slicer)





DWI distortion correction

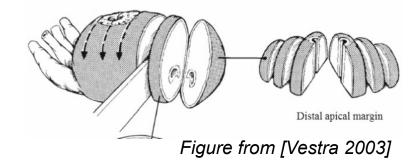
Fedorov et al, ISMRM 2012


- B-spline transformation model
- Inhomogeneity correction
- Optimizer tuned to favor A-P deformations

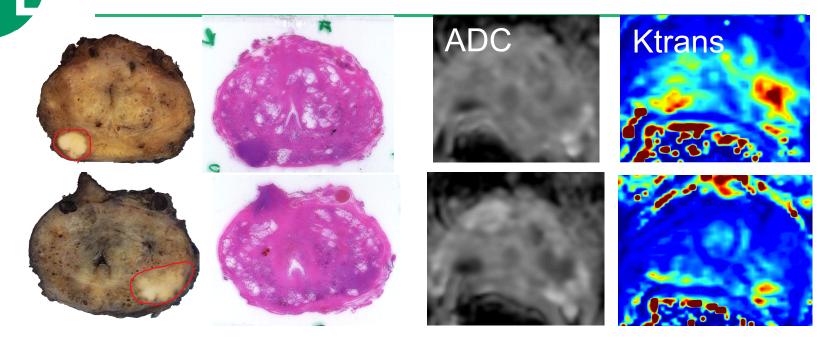
Registration across studies

Fedorov et al, ISMRM 2011

- Deformable registration to compensate for endorectal coil deformation
- Based on Iowa BRAINSFit tool (Hans Johnson)


Validation

- Overarching issue: no ground truth
- Possible options for validation
 - Radiology reports
 - TRUS biopsy results
 - MR-guided biopsy results
 - Repeat / "coffee break" studies
 - Whole mount pathology
 - Clinical outcome

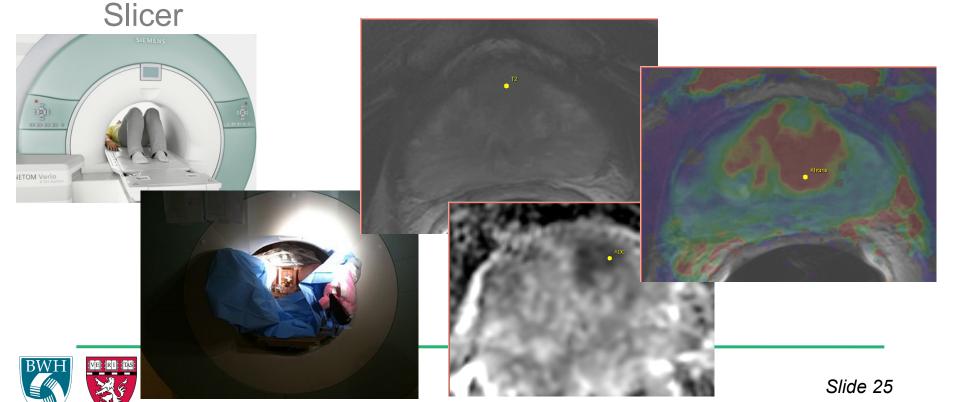


Whole mount pathology correlation

- Radical prostatectomy gland specimen
- Slide specimen shaved off 5-6 mm "slabs"
- Stained

Whole mount pathology correlation

 Geometric differences: Slice/slab thickness, orientation, shape


MR-guided prostate biopsy

Direct transperineal sampling based on pre-biopsy MRI to define targets

Target sampling is guided by 3D Slicer

Targets defined based on DWI/DCE/T2W, guided by 3D

MR-guided prostate biopsy

- Closed bore scanner
- Surface and body coils used for imaging (no endorectal coil)
- Patient is in lithotomy position
- 35 cases completed to date

BWH QIN Bioinformatics

Summary of the collected data

- Image data
 - Raw images (DICOM)
 - Derived maps and reconstructions (NRRD)
 - Segmentations (3D labels, NRRD)
 - Whole mount path slides
 - Organized on file system, Slicer MRML scene
- Clinical data (demographics, PSA, pathology)
 - Spreadsheet(s)

Other non-image data

- Pre-processing-related
 - transforms (rigid, B-spline)
 - Total gland segmentation
 - Intensity inhomogeneity correction results

Data organization

- Status quo: directories on file system
- Desired: XNAT in the works
- XNAT open questions:
 - Organization of non-DICOM data
 - Usage scenarios
 - Integration with processing tools

Summary

- Our major focus
 - Acquisition of "good" data
 - Image analysis
 - Validation
- Bioinformatics is important
 - not yet for decision-making
- 3D Slicer as a platform for clinical research

