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Abstract. A hierarchical model based on the Multivariate Autoreges-
sive (MAR) process is proposed to jointly model neurological time-series
collected from multiple subjects, and to characterize the distribution of
MAR coefficients across the population from which those subjects were
drawn. Thus, inference about effective connectivity between brain re-
gions may be generalized beyond those subjects studied. The posterior
on population- and subject-level connectivity parameters are estimated
in a Variational Bayesian (VB) framework, and structural model param-
eters are chosen by the corresponding evidence criteria. The significance
of resulting connectivity statistics are evaluated by permutation-based
approximations to the null distribution. The method is demonstrated on
simulated data and on actual multi-subject neurological time-series.

1 Introduction

Neuroimaging studies are regularly conducted in which measurements of brain
activity are collected simultaneously from multiple, analogous brain regions in
multiple subjects. These measurement may be taken by EEG, MEG, fMRI or in-
tracranial electrical monitoring. Such studies are often motivated by hypotheses
about the interaction among gross brain regions under particular experimen-
tal conditions or due to some neurological disorder. Numerous techniques have
been proposed which use such functional data to characterize Effective Connec-

tivity, defined as the influence that one brain region exerts on another under
a given interaction model. These include Structural Equation Modeling (SEM)
[14], Multivariate Autoregressive Modeling (MAR) [9, 16, 7] and Dynamic Causal
Modeling (DCM) [4]. The MAR and DCM approaches characterize effective con-
nectivity by modeling particular brain regions as variables in a causal, dynamical
system. Model parameters may thereby inform about the influence that each re-
gion exerts on the others, either directly or indirectly through other regions.

It is of interest to determine which interactions between modeled brain re-
gions are characteristic under experimental conditions within the population
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from which studied subjects are drawn. However, to our knowledge, models for
effective connectivity have been applied only in subject-independent manner. As
such, statistical inference about connectivity is limited to the specific subjects
included in a study, except by post hoc analysis of the variation in subject-specific
connectivity parameters. We propose a hierarchical, or Random Effects (RFX),
approach to the analysis of multi-subject functional time-series such that the ef-
fective connectivity parameters of all subjects are estimated jointly along with a
density describing the variation in those parameters across the population from
which studied subjects were drawn. Such joint estimation of connectivity under
SEM, MAR, DCM or other models, would be valuable for neuroimaging studies.
We have chosen the MAR process as a starting point for investigation of the
applicability of such hierarchical modeling to generalize inference about effective
connectivity to the population level.

In particular, we present the RFX-MAR model which parameterizes the in-
teractions of specified brain regions for each subject using the MAR process,
and describes the variability in those subject-level models by the mean and
variance of their MAR coefficients. We estimate population- and subject-specific
parameters in a Variational Bayesian (VB) framework, and characterize effective
connectivity at the population level by inference on the posterior of the MAR
coefficients’ means, which we refer to as the population-level MAR coefficients.
Specifically, we compute statistics related to evidence of non-zero directional in-
fluence between each pair of monitored brain regions under the MAR model,
across the sampled population. Structural parameters of the RFX-MAR model
are selected by an approximate maximum evidence criteria.

Though Gaussian population models have been used extensively in neu-
roimaging analysis for the purpose of localizing protocol-related neural activity
[5], this work is the first to investigate their utility in modeling of neural connec-
tivity. We describe the results of our analysis on synthetic and EEG time-series
collected from multiple subjects.

2 The Multivariate Autoregressive Process

The Multivariate Autoregressive (MAR) process models the temporal dynamics
of multivariate systems causally and without hidden state variables, such that
multivariate measurements at the present time are a linear function of measure-
ments in the past. This kind of parametric process has been used to identify
the linear, time-invariant (LTI) system dynamics and spectra of multichannel
time-series data in a number of contexts, including geophysics, economics and
neuroimaging [9, 16, 7]. In neuroimaging, the MAR process has been used to
model and test effective connectivity based on neurological data collected by
fMRI, EEG and direct electrical recording. In general, the MAR process may be
used when specialization of a dynamical model, possibly through hidden state
variables, is difficult or unnecessary. Since the MAR process is strictly causal,
it can model directional influence between channels, and elucidate causal chains
and loops.



A MAR(p) process is defined as follows, where Yn· ∈ <d is a sample from

d channels at time n arranged in a row vector, A(l) ∈ <d×d, l = 1, . . . , p, is a
series of matrices comprising the coefficients of the MAR model, and En· ∈ <d

is a temporally-white innovation with stationary distribution N (0,Λ−1). Note
that we replace a matrix or sequence index with a large dot · to refer collectively
to elements corresponding to all values of that index.

Yn· =
p∑

l=1

Y(n−l)·A(l) + En· = [Y(n−1)· | . . . |Y(n−p)·]︸ ︷︷ ︸
≡X

n·




A(1)
...

A(p)




︸ ︷︷ ︸
≡W

+En· (1)

We denote the p coefficients by which channel i directly influences channel j
as Aij(·) ∈ <p, and refer to this as the Direct Influence Function (DIF) from
channel i to j. Stacking these equations for each time sample n, we get the matrix
equation Y = XW + E. To highlight that this is a specialized linear regression
model, we will henceforth use its vectorized form, where y ≡ vec(Y) ∈ <Nd,

w ≡ vec(W) ∈ <d2p, and ⊗ denotes the Kronecker product (as defined in [13]):

p(y | w,Λ) = N (y ; (Id ⊗X)w , Λ−1 ⊗ IN ) (2)

The utility of maximum likelihood (ML) estimates of MAR parameters, w̃ =
vec(X+Y) and Λ̃ = (Y −XW̃)′(Y −XW̃)/(N − d2p), is limited by the large
amount of data required to fit these Θ(d2) parameters reliably. A Variational
Bayesian framework for MAR estimation has been proposed which relieves this
data requirement to some degree, by means of a prior that regularizes coefficient
magnitudes [16].

Neuroimaging experiments are commonly associated with time-varying stim-
uli or tasks. Encodings of such information can be added as linear terms in
Equation 1 without affecting analysis. As such, they account for bias in the in-
novations, and do not influence system dynamics per se, which are assumed to be
stationary in the time-series y. Nonlinear coupling between variables can be ap-
proximated in the MAR framework by adding new variables which are nonlinear
functions of data from other variables (e.g. product terms) [7].

3 The RFX-MAR Model

To generalize inference about effective connectivity to the greater population
from which studied subjects were drawn, we propose to model the variation of
subject-specific MAR coefficients across that greater population. As is standard
in population inference, we approximate the population density as Gaussian,
so that its mean characterizes dynamical structure common to the population,
and its covariance characterizes the degree of variability in that structure found
within that population. Hence, we construct a hierarchical, or Random Effects

(RFX), model which describes both the subject-specific MAR parameters and



the inter-subject variation of those parameters.

p(yk | wk, Λk) = N
(
yk ; (Id ⊗Xk)wk , Λ−1

k ⊗ In

)
, k = 1, . . . , S (3)

p(wk | w0, γ) = N
(
wk; w0 ,

H∑

h=1

γ−1
h Qγh

)
(4)

p(w0 | α) = N
(
w0; 0,

G∑

g=1

α−1
g Qαg

)
(5)

In particular, we model the multivariate time-series yk ∈ <Nkd from each subject
k as MAR(p) process with coefficients wk and innovations precision (inverse co-
variance) Λk (Equation (3)). The data from subject k comprise Nk time samples
of dimension d. Each subject-specific MAR coefficient [wk]i is drawn indepen-
dently about its population mean [w0]i with some precision γh (Equation (4)).
We group coefficients to reflect similarity in their inter-subject variation, rather
than assuming a single variance for all coefficients a priori. Each of these random-
effects variance groups are associated with a precision γh, h = 1, . . . , H . This
“structuring” of inter-subject variation is defined as follows:

groupγ(i) ≡ the RFX group of [wk]i [Qγh
]ij ≡ δijδ(groupγ(i) = h) (6)

Additionally, we assume that each population-level coefficient [w0]i is drawn in-
dependently from a zero-mean Gaussian, and partitioned into one of G groups
with other coefficients with similar magnitudes (Equation (5)). This kind of
“structured” prior was used to reduce the effective degrees of freedom in single-
subject MAR modeling [16, 7], and has been referred to as an Automatic Rel-

evance Determination (ARD) prior [11]. This ARD structuring is defined as
follows, where g = 1, . . . , G indexes the groups:

groupα(i) ≡ the ARD group of [w0]i [Qαg
]ij ≡ δijδ(groupα(i) = g) (7)

In summary, we have a three-level linear Gaussian model. Its first level describes
subject-specific variation with the MAR process. Its second level describes vari-
ation in subject-specific coefficients across the sampled population by means of a
Gaussian density with diagonal precision matrix. The third level regularizes the
magnitude of the population-level coefficients. Naturally, care should be taken to
look for inconsistency between this model and the qualities of data to which it is
applied. Since the data has zero mean under the MAR model, the sample mean
is removed from each data channel as a pre-processing step. Furthermore, each
channel’s signal is individually normalized by its sample variance (we expect to
model stable systems). By doing so, the cross-coefficients of wk, i.e. [Ak]ij(·)
for i 6= j, are comparable across subjects, normalized by the ratio between the
amplitudes of the “to” and “from” signals

∥∥[Yk]·j
∥∥/∥∥[Yk]·i

∥∥.
For notational simplicity, we will henceforth refer to the N ≡

∑S
k=1 Nk sam-

ples of multi-subject data collectively as y ≡ [y′

1 . . .y′

S ]′; the subject-level preci-
sions as Λ ≡ {Λ1, . . . ,ΛS}; and the population and subject-specific coefficients
as w ≡ [w′

0 w′

1 . . .w′

S ]′.



3.1 Precision Priors

Since we intend to estimate the RFX-MAR model in a Bayesian framework, we
set the following “noninformative” priors for the precision parameters in (3)–(5)
to represent an absence of prior information.

p(Λ) ∝
s∏

k=1

∣∣Λk

∣∣− d+1

2 p(α) =

G∏

g=1

Ga(αg ; ap , bp), ap, bp ≡ 10−3

p(γ) =

H∏

h=1

(
2uγ

3
2

h

)−1

, γh ≥ u−2, u ≡ 103

(8)

We subscribe to the view in [6] that “any noninformative prior distribution
[is] inherently provisional— after the model has been fit, one should look at
the posterior distribution to see if it makes sense.” We follow [16] in the form
of the priors on precisions Λ and α due to their success in the single-subject
MAR modeling and in our experiments on synthetic multi-subject data. The
prior on α follows a Gamma density [1], and the prior on Λ is improper. Both
were motivated by Jeffreys’ Rule [2]; however, they do not follow from its strict
application, but rather from its application to the first and third levels of the
model in isolation. The prior on γ is equivalent to a locally uniform prior on the
standard deviation of inter-subject variation σh ≡ γ−0.5

h for each RFX variance
group h. This prior is suggested for RFX models as preferable to those of the
family Ga(γh; ε, ε), under which inference is sensitive to ε when σh is near zero
[6]. We observed this sensitivity in our experiments.

4 Variational Posterior Estimation

In this section, we describe a Variational Bayesian (VB) algorithm [8, 10] for
estimating the posterior of the RFX-MAR model’s real-valued parameters, in-
cluding the MAR coefficients w and precision parameters Λ, γ and α. Our choice
of this framework for posterior estimation was motivated by its suitability to es-
timation of a single MAR process [16, 7]. In Sect. 5, we address selection of the
model’s discrete-valued, structural parameters, which include the MAR model
order and the RFX and ARD structuring functions.

The VB algorithm proceeds as follows: For a generic statistical model with
parameters θ and observed data D, an approximation to the true posterior
q(θ) ≡ p̂(θ | D) is produced by maximizing a lower bound on the model’s log
evidence

F ≡ log p(D)−D(q(θ) ‖ p(θ | D)) ≤ log p(D) (9)

with the simplifying assumption that the posterior approximation factorizes
q(θ) ≡

∏
i q(θi) in some way. The quantity F is referred to as the negative

variational free energy. Maximization proceeds by fixed-point iteration whereby
the posterior for each subset of parameters θi is updated sequentially, while
holding the posterior of remaining parameters constant. If priors are set to be
conditionally-conjugate under such posterior independence assumptions, each



VB update step may reduce to a closed-form update of the induced sufficient
statistics of q(θi). This is referred to as Free-Form Variational Bayes. Alterna-
tively, Fixed-Form Variational Bayes refers to a VB update step which follows
from assuming additionally that the posterior factor has a particular parametric
form. For instance, the Expectation Maximization (EM) algorithm [3] is a special
case in which the second of two parameter groups is assumed to have a singular
posterior q(θ1, θ2) ≡ q(θ1)δ(θ2 − θ̂2) with parameter θ̂2.

For the RFX-MAR model, we assume the posterior independence of the
precisions parameters and MAR coefficients. With this assumption, it can be
shown that precisions’ posterior further factorizes, due to the graphical structure
of the model and their prior independence:

q(w,Λ, γ, α) ≡ q(w)q(Λ, γ, α) = q(w)
S∏

k=1

q(Λk)
H∏

h=1

q(γh)
G∏

g=1

q(αg) (10)

Furthermore, with priors on the precision parameters of the form given in (8),
it can be shown that the posterior factors follow Normal, Wishart, Gamma and
incomplete Gamma4 densities (denoted N , W , Ga, and IGa, respectively) [1].
Thus the free-form VB algorithm proceeds by sequential update of the sufficient
statistics of each posterior factor until convergence to a fixed point. These up-
dates are given below in (11)–(14). For clarity in these equations, we let

∑
ig

denote summation over the κg coefficient indices i which are part of ARD prior
group g, i.e.

∑
i :group

α
(i)=g . Similarly,

∑
ih

denotes
∑

i :group
γ
(i)=h, where the

RFX group h contains νh coefficients. We also define Λ̃k ≡ Λ̂k ⊗ X′

kXk and

w̃k ≡ vec(X+
k Yk ), and let Γ̂ ≡

∑H
h=1 γ̂hQγh

and Ξ̂ ≡
∑G

g=1 α̂gQαg
denote the

estimated precision matrices for the second and third levels of the RFX-MAR
model.

Update for q(w)← N (w ; ŵ , Σ̂): The (k, l)th block of Σ̂ of size d2p× d2p is

denoted Σ̂(kl), k, l = 0, . . . , S

Σ̂(00) =

(
Ξ̂ + SΓ̂− Γ̂

[
S∑

k=1

(Γ̂ + Λ̃k)−1

]
Γ̂

)−1

Σ̂(0k) = Σ̂(k0)′ = Σ̂(00)Γ̂(Γ̂ + Λ̃k)−1, k = 1, . . . , S (11)

Σ̂(kl) = δkl(Γ̂ + Λ̃k)−1 + (Γ̂ + Λ̃k)−1Γ̂Σ̂(00)Γ̂(Γ̂ + Λ̃l)
−1, k, l ≥ 1

ŵ′ =
[
0′ (Λ̃1w̃1)

′ . . . (Λ̃Sw̃S)′
]
Σ̂

Update for q(Λ)←
∏S

k=1Wd(Λk ; ak , Bk):

ak = Nk Ωk ≡
Nk∑

n=1

(Id ⊗ [Xk]n·)Σ̂(kk)(Id ⊗ [Xk]n·)′

Bk = (Yk−XkŴk)′(Yk−XkŴk)+Ωk Λ̂k ≡ Eq(Λk)

{
Λk

}
= akB

−1
k

(12)

4 We define the incomplete Gamma density IGa(x; a, b, xmin) to be proportional to
the Gamma density Ga(x;a, b) for positive values x ≥ xmin, and zero otherwise.



Update for q(γ)←
∏H

h=1 IGa(γh ; aγh
, bγh

, u−2) :

aγh
=

νhS − 1

2
bγh

=
1

2

S∑

k=1

∑

ih

[
[Σ̂(00)−2Σ̂(k0)+Σ̂(kk)]ihih

+[ŵk−ŵ0]
2
ih

]

γ̂h ≡ Eq(γh)

{
γh

}
=

1

bγh

[
aγh

+
(bγh

u−2)aγh exp
{
−bγh

u−2
}

Γ (aγh
, bγh

u−2)

] (13)

Update for q(α)←
∏G

g=1 Ga(αg ; aαg
, bαg

):

aαg
= ap +

κg

2
bαg

= bp +
1

2

∑

ig

[
[Σ̂(00)]igig

+ [ŵ0]
2
ig

]

α̂g ≡ Eq(αg)

{
αg

}
= aαg

b−1
αg

(14)

In our experiments with this algorithm, we found that the sufficient statistics
for q(Λ) and q(α) converge quite rapidly, but that convergence of those for q(γ)
is extremely slow for data in which any RFX group has a large precision γh. This
observation is consistent with the literature on EM estimation of generic RFX
models [15]. However, we found that posterior optimization could be made quite
rapid by using Powell’s direction set method [17] to estimate the otherwise slow-
converging sufficient statistics of q(γ). In this approach, the optimal negative
variational free energy F at each setting of q(γ) is computed using the relatively
rapid VB fixed-point iteration for the remaining parameters (Equations (11),
(12) and (14)):

max
bγ

VB iteration︷ ︸︸ ︷
max

bw,bΣ,bΛ,bα

F (ŵ, Σ̂, Λ̂, γ̂, α̂)

︸ ︷︷ ︸
Powell’s Method

(15)

Above, we are able write F above as a function solely of the precision means
since only one of the two sufficient statistics of their respective posteriors varies
during VB optimization.

We initialize this hybrid algorithm by computing the sample mean and preci-
sion of source-independent ML estimates of the source-level coefficients and noise
precisions, and then by running the full VB iteration until the change in Λ̂ and
α̂ becomes less than 10−4. This quickly produces a posterior estimate q(Λ, γ, α)

which is nearly optimal. We cache the optimal Λ̂ and α̂ for recent evaluations of
F (γ̂) to initialize the VB iteration of subsequent evaluations, so that as Powell’s
method converges, the VB iteration is started very close to its fixed-point. We
terminate the hybrid optimization when F is maximized to precision ±10−10.

The following is an expression for the negative variational free energy F under
the RFX-MAR model. Note that we have dropped an infinite constant due to
the improper prior on Λ, and have canceled a number of terms by assuming
that F is evaluated after the update steps for q(Λ) and q(α), but before the
next update for q(w). If q(γ) is being updated, then the last line also cancels.



The block structure of Σ̂ can be used to make evaluation of its determinant
|Σ̂
∣∣ = |Σ̂(00)|

∏S

k=1 |Γ̂ + Λ̃k|−1 computationally manageable.

F =
d

2

(
S(d− 1)

2
−N

)
log π +

(S + 1)d2p

2
+

1

2
log
∣∣Σ̂
∣∣+

G∑

g=1

log
b
aαg
αg Γ (âαg

)

b̂
baαg
αg Γ (aαg

)

+

H∑

h=1

log
Γ (âγh

, b̂γh
u−2)

2ub̂
baγh
γh

+

S∑

k=1

[
Nk

2
log
(∣∣Λ̂k

∣∣N−d
k

)
+

d−1∑

i=0

log Γ
(Nk − i

2

)]

+

H∑

h=1

γ̂h

(
b̂γh
−

γ̂h

2

S∑

k=1

∑

ih

[
[Σ̂(00) − 2Σ̂(k0) + Σ̂(kk)]ihih

+ [ŵk − ŵ]2ih

])

5 Model Structure Selection

Since the VB algorithm maximizes a lower bound on the log evidence p(D|H)
of a generic model H , the optimized negative variational free energy F (H) can
be used to approximate the posterior on model structure p(H |D) by search over
competing models [16, 12]. For the RFX-MAR model, H is parameterized by its
discrete-valued structural parameters: the MAR model order p, the RFX struc-
turing function groupγ(), and the ARD structuring function groupα(). Thus,
inference can proceed either by model averaging (for which exp(F (H)) weights
the posterior q(θ|H) under each H), or by model selection (for which inference

proceeds based only on the posterior q(θ|Ĥ) under the model Ĥ = argmaxF (H)
with maximum approximate evidence). The latter VB model selection criteria is
equivalent to the Bayesian Information Criteria (BIC) in the large sample limit,
and has been shown superior to BIC for model order selection in single-subject
MAR modeling [16]. We choose a model selection framework since in our experi-
ence with the RFX-MAR on real and synthetic data, F (H) is typically strongly
peaked and the coefficient posterior is very similar under all explored model
structures with non-vanishing evidence.

We search the MAR order parameter p exhaustively over positive integer
values, up to some maximum. Since exhaustive search is not possible for the
RFX and ARD group functions, we follow [16] which suggests a semi-automatic,
heuristic search method for finding a structuring function likely to group coef-
ficients appropriately. These may include hand-tailored structurings, or generic
ones such as a “global” function which puts all coefficients into the same group.
Another example is an “interaction” function which groups all coefficients cor-
responding to interactions between channels, Aij(·) for all i 6= j, and places the
remaining coefficients into a second group. Such functions may also be selected
semi-automatically. For instance, an “auto” function for the ARD structuring
can be produced by k-means clustering of the MAP coefficient estimates under
the “global” structuring. An “auto” function for the RFX variance structuring
can be produced by k-means clustering of the sample variances of MAP coeffi-
cient estimates from subject-independent MAR modeling.



6 Connectivity Inference

We are principally interested in inferring which direct interactions between mod-
eled brain regions are non-zero within a population under experimental condi-
tions. Inference of this kind will be based on (marginalization of) the posterior of
the population-level coefficients q(w0). Having selected a model structure by the
VB maximum evidence criteria, we can report on the population-level effective
connectivity between variables i and j by computing a statistic that relates to the
posterior “plausibility” of A0

ij(·) = 0 under q(w0), where A0
ij(·) are the coeffi-

cients in w0 related to the direct influence of variable i on j. Generally speaking,
one can report on the posterior plausibility of a specific parameter value θ = θ0

by computing the complementary probability content of the smallest Highest

Probability Density (H.P.D.) region of the posterior q(θ) that contains the value
in question [2]. For a Gaussian posterior q(θ) = N (θ; µ, Ω) with full-rank co-
variance Ω, it is readily shown that this connectivity statistic s0 is a monotonic
function of the Mahalanobis distance from the posterior mean µ ∈ <r to the
specified value θ0. Note that s0 decreases as θ = θ0 becomes less plausible a
posteriori.

s0 = 1− χ2
r

(
(θ0 − µ)′Ω−1(θ0 − µ)

)
(16)

To assess the specificity of a test which rejects the null hypothesis (that A0
ij(·) =

0) by thresholding such connectivity statistics, we simulate a null distribution
by permutations of the time-series data and re-estimation of the these statistics
[9]. In particular, we randomly sample circular translations of each of the d time-
series for each subject such that every pair of univariate time-series are shifted by
more than 2pmax lags. Here, pmax is the maximum MAR model order entertained
in our search. This produces multivariate time-series whose univariate statistics
are roughly unaffected, while removing causal interactions between variables.

7 Experiments

The ability of the MAR process to capture inter-regional neural dynamics has
been shown on synthetic data from biologically plausible models [9]. We validated
our estimation algorithm in terms of its ability to estimate all real-valued and
structural RFX-MAR parameters using multivariate time-series sampled from
known RFX-MAR models. The scope of our investigation was quite broad and
involved varying the number of subjects S, number of samples per subject Nk,
and degree of inter-subject variance of MAR coefficients. We considered the cases
where the subject-specific coefficients were drawn about a single mean, about
two means, and drawn independently. We also compared performance of the
RFX-MAR model to the subject-independent MAR estimation of [16], and to a
“fixed-effects” model in which all subject-level coefficients were assumed to be
identical. In summary, we found parameter estimation and model selection to
be robust when the number of subjects S ≥ 10, and the number of samples per
subject Nk was greater than approximately three times the number of parameters



per subject at the optimal model order d2(p + 1). Classification error for non-
zero direct influences between pairs of variable was less than 5% in general.
When the amount of data was more limited, the RFX-MAR model tended to
overestimate the model order p, but with little impact on connectivity inference.
Subject-independent estimation of p was generally more robust.

RFX-MAR analysis of a small number of fMRI and EEG multi-subject
datasets have produced promising results. Here, we detail our analysis of multi-
subject EEG time-series from the UCI Knowledge Discovery Database5. This
dataset contains measurements from 64 electrodes placed on the scalps of healthy
subjects and sampled at 256 Hz for 1 second during a picture presentation task.
The protocol and data are described in [18]. We performed RFX-MAR modeling
of 1 second of data from each of S=20 healthy subjects, having selected d=6 chan-
nels from the frontal (F5, F6), temporal (T7, T8), and parietal (P3, P4) regions in
each hemisphere. We searched all combinations of the following structural param-
eter settings: p = {1, . . . , 5}, groupγ = {global, interaction, auto (H=2, 3, 4)}
and groupα = {global, interaction, auto (G=2, 3, 4)}. The MAP model struc-
ture was p = 5, groupγ = groupα = interaction. This model order was consistent
with the most common model order estimated by subject-independent analysis
of the data. The MAP inter-subject standard deviation of coefficients involved
with within-channel predictions was 0.027, whereas that for coefficients involved
in cross-channel prediction was 0.007. The posterior of the population-level co-
efficients is shown in Fig. 1. We computed connectivity statistics using (16) to
assess evidence of a non-zero causal interaction between each pair of channels,
and estimated the null distribution of these statistics by repeating analysis on
100 randomly, circularly shifted versions of each channel, in each subject. This
yielded 100 d(d− 1) = 3000 samples of connectivity statistics between channels
for which there is unlikely to be a causal connection. Figure 2 shows the inferred
population-level effective connectivity pattern, the associated connectivity statis-
tics, and their estimated p-values. We note that few variables were found to be
interacting when the same data was modeled in a subject-independent manner,
except when a larger sample of the data was included for each subject. This
points to the cross-subject regularizing effect that joint modeling of multiple
subjects can have to elucidate more subtle connectivity patterns in the data. We
repeated this analysis for S=20 different healthy subjects from the same study,
and found the population-level posterior and effective connectivity pattern to be
very similar.

8 Discussion

We have presented the initial development of a method for population modeling
of effective connectivity among brain regions based on neurological time-series.
Numerous avenues exist for further elaboration, validation and utilization of this
kind of model. We are particularly interested in different ways two populations

5 http://kdd.ics.uci.edu These data were provided by Henri Begleiter at the Neurody-
namics Laboratory at the State University of New York Health Center at Brooklyn.
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Fig. 1. The posterior mean of the population-level directed influence functions A0

ij(·)
(plotted with 99% H.P.D.-content error bars) given the RFX-MAR structural param-
eters with maximum F for the EEG dataset. The background of plot (i, j) is colored
black when the connectivity statistic s0 for A0

ij(·) = 0 is less than 10−6.

(distinguished, for example, by the presence of disease) might be compared on
the basis of effective connectivity. Certainly, one can perform inference on the
population-level coefficients produced by independent RFX-MAR modeling of
the two populations. However, the success of classifiers produced from such pop-
ulation models would lend credence to what is necessarily a model-dependent
characterization of the interaction among brain regions. It would also be valu-
able to construct similar population models for more elaborate systems models,
such as those not limited to time-invariant connectivity patterns. Finally, we
note that the RFX-MAR model can also be used to characterize other types of
variation in connectivity parameters, such as that arising from repeated trials
under similar experimental conditions.
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