NA-MIC TBI DBP: Three Years of Progress in Modeling and Mapping Neurotrauma

Keck Medicine of USC

John Darrell Van Horn, Ph.D.

associate professor of neurology,
neuroscience, and engineering
Institute for Neuroimaging and Informatics
University of Southern California

www.ini.usc.edu

Longitudinal neuroimaging of TBI

Multimodal neuroimaging approach

Acute

ventricular system
edema
hemorrhage

Irimia et al. (2011) Journal of Neurotrauma vol. 28, p. 2287

Chronic

ventricular system edema hemorrhage

Irimia et al. (2011) Journal of Neurotrauma vol. 28, p. 2287

longitudinal changes in brain shape

acute chronic

Irimia et al. (2011) Journal of Neurotrauma vol. 28, p. 2287

geometric metamorphosis
joint estimation of background
& pathology deformation

registration of sliding anatomical structures

global background motion

pathology grows or contracts

accounting for diffeomorphic and non-diffeomorphic features

Niethammer, Aylward, et al.

Multimodal Registration for TBI

Lou, et al. (2013) IEEE Trans Biomed Eng vol. 60, p. 2511

patient-tailored visualizations

injury severity

Structural brain changes after TBI

substantial changes are observed even in healthyappearing regions of the TBI brain

Time Dependent Changes in Cortical Thickness in TBI

Surface-based biomarkers shown for one subject:

- (a) Visualization of cortical thickness change and spatial displacement,
- (b) Cortical thickness distributions at acute and chronic time points.

Illustrating cortical atrophic processes ongoing long after initial injury affect the entirety of the cortex including healthy appearing tissues

Connectome Variability

connections affected by primary injuries

Irimia et al. (2012) Frontiers in Neurology vol. 3, article 1

lobar code

parcellation code

parcellation color

degree of connectivity

severely atrophied connections at 6 mo

Ins lobar code

ACIVING
SUDGILLUS
SU

Irimia et al. (2012) Frontiers in Neurology vol. 3, article 1

patient-tailored visualizations

injury severity

TBI-related white matter atrophy in healthy appearing regions

injury severity

Van Horn et al., (2012) PLoS ONE

Geometric modeling of head tissues via the finite element method (FEM)

EEG inverse localization in the presence of TBI

Goh et al. (2013) and Irimia et al. (2012)

Final Phase NA-MIC DBP Activities

- We are organizing a Slicer dissemination event in February 2014 at USC in collaboration with Sonja Pujol (BWH) to present Slicer functionality to clinicians and translational brain scientists.
- We will interact closely with the group of Marc Niethammer and with Kitware to deliver a CLI module which implements geometric metamorphosis for TBI and which can be integrated into 3D Slicer.
- We will aid our colleagues in the Utah team as they integrating their interactive GrowCut algorithms for TBI lesion segmentation with the ABC algorithm within a 3D Slicer module using a Python script implementation.
- We will develop several Slicer MRB (medical reality bundle) packages which will include TBI sample data sets, tutorials and documentation. These will be uploaded into the MIDAS server of the NA-MIC collaboration via the DataStore feature.
- We will be writing grants, grants, and more grants to continue our innovative research into the characterization of subject specific brain trauma using multi-modal neuroimaging methods

JOURNAL OF NEUROTRAUMA 28:2287–2306 (November 2011)

© Mary Ann Liebert, Inc.
DOI: 10.1089/neu.2011.1920

Comparison of Acute and Chronic Traumatic Brain Injury Using Semi-Automatic Multimodal Segmentation of MR Volumes

Andrei Irimia, Micah C. Chambers, ^{1,2} Jeffry R. Alger, ^{3–5} Maria Filippou, ⁶ Marcel W. Prastawa, ^{7,8} Bo Wang, ^{7,8} David A. Hovda, ³ Guido Gerig, ^{7,8} Arthur W. Toga, ^{1,4,5} Ron Kikinis, ⁹ Paul M. Vespa, ⁶ and John D. Van Horn ¹

frontiers in **NEUROLOGY**

Patient-tailored connectomics visualization for the assessment of white matter atrophy in traumatic brain injury

Andrei Irimia¹, Micah C. Chambers¹, Carinna M. Torgerson¹, Maria Filippou², David A. Hovda², Jeffry R. Alger³, Guido Gerig⁴, Arthur W. Toga¹, Paul M. Vespa², Ron Kikinis⁵ and John D. Van Horn¹*

- ¹ Laboratory of Neuro Imaging, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- ² Brain Injury Research Center, Departments of Neurology and Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
- ³ Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- ⁴ Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
- ⁵ Surgery Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA

OPEN & ACCESS Freely available online

Mapping Connectivity Damage in the Case of Phineas Gage

John Darrell Van Horn¹*, Andrei Irimia¹, Carinna M. Torgerson¹, Micah C. Chambers¹, Ron Kikinis², Arthur W. Toga¹

1 Laboratory of Neuro Imaging (LONI), Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America, 2 Surgical Planning Laboratory, Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America

Brain Imaging and Behavior DOI 10.1007/s11682-012-9202-3

ORIGINAL RESEARCH

DTI tractography and white matter fiber tract characteristics in euthymic bipolar I patients and healthy control subjects

Carinna M. Torgerson · Andrei Irimia · Alex D. Leow · George Bartzokis · Teena D. Moody · Robin G. Jennings · Jeffry R. Alger · John Darrell Van Horn · Lori L. Altshuler

Contents lists available at SciVerse ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/ynimg

Full Length Articles

Circular representation of human cortical networks for subject and population-level connectomic visualization

Andrei Irimia *, Micah C. Chambers, Carinna M. Torgerson, John D. Van Horn

abomitary of Neum Imagine Department of Neumlagy David Cellen School of Medicine University of California Los Angeles 635 Charles E Vaung Drive South Suite 225 Los Angeles 89 (2012) 2464–2474

Contents lists available at SciVerse ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/ynimg

Source cancellation profiles of electroencephalography and magnetoencephalography

Andrei Irimia a,*, John Darrell Van Horn a, Eric Halgren b

NeuroImage 66 (2013) 489-49

Contents lists available at SciVerse ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/ynimg

The structural, connectomic and network covariance of the human brain

Andrei Irimia *, John D. Van Horn

NeuroImage: Clinical 1 (2012) 1-17

Contents lists available at SciVerse ScienceDirect

NeuroImage: Clinical

journal homepage: www.elsevier.com/locate/ynicl

Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction $^{\cancel{\gamma}}$

Andrei Irimia ^{a,*}, Bo Wang ^b, Stephen R. Aylward ^c, Marcel W. Prastawa ^b, Danielle F. Pace ^c, Guido Gerig ^b, David A. Hovda ^d, Ron Kikinis ^e, Paul M. Vespa ^d, John D. Van Horn ^a

- ^a Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles, CA 90095, USA
- ^b Scientific Computing Institute, University of Utah, Salt Lake City, UT 84112, USA
- Kitware, Inc., Clifton Park, NY 12065, USA
- Brain Injury Research Center, Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA
- ^e Surgical Planning Laboratory, Department of Radiology, Harvard Medical School, Boston, MA 02115, USA

Acknowledgments

Guido Gerig Utah

Arthur Toga USC

Allen Tannenbaum Stony Brook

Paul Vespa UCLA

Ron Kikinis
Harvard

• USC:

• UCLA:

• Univ. of Utah:

• Harvard:

• Kitware/UNC:

• UC Irvine:

Andrei Irimia, Matt Goh, Carinna Torgerson

Paul Vespa, David Hovda, Jeffrey Alger

Marcel Prastawa, Bo Wang

Sonia Pujol

Stephen Aylward, Marc Niethammer

Yifei Lou

Supported by NIBIB (grant 2U54EB005149)

http://www.na-mic.org/Wiki/index.php/DBP3:UCLA

Thank you Ron and the NA-MIC Community