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ABSTRACT

A statistical model of the fiber bundles is calculated as the
average and standard deviation of a parametric representation
of the fiber tracts, using the coefficients of the 3D quinticB-
spline representation of the tracts. An atlas of the fiber tracts
is constructed by averaging the bundle models over a popu-
lation with the fiber tracts mapped onto the atlas coordinate.
Using the model representation and with the atlas as the prior
map, expectation-maximization (EM) is performed to cluster
the fiber tracts in a mixture model framework. As an appli-
cation, the method is applied to cluster the corpus callosum
fiber tracts into its subdivisions and to calculate quantitative
parameters for each region.

1. INTRODUCTION

Diffusion tensor MR imaging (DT-MRI) is considered a pow-
erful tool to identify pathologies in white matter well before
any structural change is visible in other imaging modalities
[1]. It measures the local diffusivity of water molecules within
the tissue, and thus provides some information about the den-
sity and orientation of white matter fiber tracts as the water
diffusion is restricted in the direction normal to the fibers. Us-
ing a tractography scheme, pathways of the fiber tracts can be
extracted from the DT data and visualized as fiber bundles to
give a sense of the degree of connectivity between different
functional regions. Any disease or pathology that affects the
density or orientation of the fiber tracts can be detected via
fiber tracking and comparison with an atlas of fiber bundles
in normal cases. However, most clinical studies performed
so far are limited to the analysis of the local parameters mea-
sured in a manually defined region of interest (ROI) and aver-
aged over a set of healthy and patient cases. Such methods are
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not time-efficient and their accuracy is limited by the reliabil-
ity of specifying the ROIs by the expert. Others performed
a voxel-based analysis of a registered DTI dataset, which re-
quires non-linear wrapping of the tensor field and is prone to
its associated problems [2, 3].

An alternative approach is to construct an atlas of the fiber
tracts as 3D curves extracted from a set of DTI dataset and av-
eraged over a population [4]. In its simplest form, an atlas can
be a labeled set of fiber tracts extracted from DT-MR images
of a group of healthy subjects and registered onto a given co-
ordinate system [5]. However, it would be computationally
expensive to compare a given tract with such an atlas. Also,
the presence of any outlier in the atlas would deteriorate the
quality of such comparisons. A more rigorous approach is to
build a statistical model for each fiber bundle.

In this work we calculate a statistical model for each fiber
bundle and construct an atlas as an aggregate set of such mod-
els averaged over a population. Furthermore, we employ this
modeling framework along with the atlas as the prior map for
mixture-model clustering of the fiber tracts. Closely related
prior work are those on the shape modeling of the fiber bun-
dles [6, 7], where each model is represented by a prototype
and its trajectory in the space. The prototype is represented
by the rotation and translation invariant parameters (curvature
and torsion) of the fiber tracts as 3D curves plotted against
the arc length and averaged over each bundle. However, the
common origin of the plots is defined either manually or an
anatomical landmark is chosen if possible (e.g. midsagittal
points for corpus callosum). This complicates the application
of the method in population studies. Other attempts on build-
ing an atlas of the bundles construct a probabilistic map of the
occurrence of different fiber bundles at each voxel [8, 4].

We start by calculating a statistical model for each fiber
bundle as the average and standard deviation of a paramet-
ric representation of the fiber tracts. The coefficients of the
3D quinticB-spline representation of the fibers is used as the
parameters [9]. An atlas of the fiber tracts is constructed by
averaging the bundle models over a population with the fiber
tracts mapped onto the atlas coordinate. The transform pa-
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Fig. 1. Depending on the application, a set of fiber tracts can
be modeled into a desired number of bundles. Modeling of the
splenium fiber tracts (a) as either one (b) or two (c) bundles,
and the capsula interna anterior (d) as either one (e) or three
(f) bundles. The surfaces represents the mean tract plus the
standard deviation.

rameters for this mapping is calculated by registering the T2
baseline images of each case to the atlas coordinate. Using the
model representation and with the atlas as the prior map, we
perform expectation-maximization to cluster the fiber tracts in
a mixture model framework. As an application, the method is
applied to cluster the callosal fiber tracts into corpus callosum
subdivisions.

2. MODELING OF A BUNDLE OF FIBER TRACTS

To represent a bundle of fiber tracts with a limited number
of parameters, the following issues must be considered: The
tracts in a bundle are not aligned with each other, and they
even do not have the same length. Furthermore, due to the
presence of local noise and imaging imperfections, the ex-
tracted fiber tracts exhibit variations. There is more varia-
tion at the extreme parts of the tracts where the fractional
anisotropy is rather low and thus the tractography algorithm
is more sensitive to local noise and possibly its termination
criteria. In other words, the medial part of the tracts are more
reliable and should contribute more to the average shape of
the bundle. Considering the above issues, we used the fol-
lowing scheme to model a bundle of fiber tracts, where each
tract is represented with an equally-spaced sequence of con-
trol points from its quinticB-spline representation. We first
apply a 3D string matching technique as described in [10] to
find the correspondence between the control points on each
tract to those on the longest tract in the bundle or a given
reference tract. The mean and the standard deviation of the
tracts in the bundle are then readily computed. We introduce
a weighting factor as a measure of the reliability of each point
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Fig. 2. Each tract is aligned to the template tract (current
mean tract) of the cluster to either contribute to the mean
and variance or to assign its membership likelihood. Curve
matching is performed to find a single longest matched seg-
ment. So, the tract might have extra segments not aligned
(extension) or missing segments.

in the model sequence. This is obtained by counting the num-
ber of data points contributing to the mean tract, normalized
to the total number of tracts. Fig. 1 illustrates the obtained
models for two bundles of fiber tracts.

3. MIXTURE MODEL CLUSTERING

Being able to construct a statistical model of the bundles, we
use a mixture model approach to cluster the fiber tracts. Here,
we invoke the expectation maximization framework [11] with
modifications required to handle the issues specific to 3D curves
as the input data set. Three-dimensional curve matching is re-
quired to align the tracts in each cluster at each EM iteration.
Furthermore, provisions should be made to deal with the vari-
able length of the input data.

3.1. Estimating the Cluster Parameters

To estimate the mean and the variance of the clusterk, we
first need to align each tractri to the current mean tract of the
cluster,µk (Fig. 2). If we denote the aligned tract withrik,
and the probability of the tract to belong to the cluster with
pik, the mean and variance can be calculated as:

µk =
∑

i

pikrik/
∑

i

pik (1)

and
λk =

∑
i

pik(rik − µk)2/
∑

i

pik. (2)

Furthermore, for each pointj of the mean tract,µk, a weight,
wkj , is calculated as the number of tracts that contributed to
that point.

3.2. Aligning the Tracts

Each tract needs to be aligned with the current mean tract
of the cluster,µk, before either it contributes to the calcu-
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Fig. 3. A schematic of Witelson corpus callosum subdivisions
[12] based on the midsaggital slice: (1) rostrum (2) genu (3)
rostral body (4) anterior midbody (5) posterior midbody (6)
isthmus, and (7) splenium. We further divide the splenium to
its upper and lower parts to have a finer model.

lation of the new mean and variance or its new membership
likelihood is assigned (Fig. 2). A string matching algorithm
[10] is performed to find a single longest match. The string
elements are the coefficients of the 3D quinticB-spline rep-
resentation of the curves. The algorithm performs a search
to find a match that gives the minimum average distance be-
tween the matched segments. More elaborate algorithms can
be implemented to speed up the 3D curve matching process.
However, as the spatial position of the tracts bears meaningful
information, care must be taken when using those algorithms
that rely on rotation- and translation-invariant parameters by
assigning proper penalty to such transforms.

3.3. Assigning the Membership Probabilities

The next step in the EM algorithm is to re-calculate the mem-
bership probability of each tract,ri, to a clusterk. It uses
the cluster parameters calculated in the first step, along with
the prior probability given by an atlas. Bayes rule is used to
assign the posterior probability:

pik = fikgik/
∑

k

fikgik, (3)

wherefik andgik are the likelihood anda priori probability
of the tractri to belong to the clusterk, respectively. Assum-
ing that the points on each tract are independent, the likeli-
hood function can be calculated by multiplying the likelihood
functions of the individual points,fik =

∏
j fikj , where

fikj =
1√

2πλkj

exp(− (rikj − µkj)2

2λkj
), (4)

for aligned points, andfikj = c ≤ 1, is the penalty for exten-
sion and missing points.

4. CORPUS CALLOSUM MODELING

The corpus callosum (CC) is the largest fiber bundle that con-
nects the two hemispheres of the brain. Different pathologies
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Fig. 4. Modeling of the corpus callosum fiber tracts. (a) The
tracts are clustered into Witelson subdivisions based on their
spatial position (Fig. 3). (b) The tracts in each cluster are then
3D aligned and statistical models are calculated.

such as multiple sclerosis [13] and schizophrenia [14] can af-
fect different regions of the CC. Moreover, it is one of the
first bundles discernible in early stages of the neonatal brain
development. In addition to the quantitative analysis being
performed based on the evolution of parameters such as FA,
the study of the shape evolution of the CC during brain devel-
opment is of interest.

Following the notion of Witelson [12], we divide the cor-
pus callosum to seven subdivisions. We further divide the
splenium into two bundles to obtain a finer model, as shown in
Fig. 3. Note that any other definition for subdividing process
could be used to construct the atlas which would be used in
our clustering method. Fig. 4 shows the calculated model for
a normal subject under study. The fiber tracts are extracted
using a stochastic tractography method, starting from the ROI
specified by an expert [5]. The CC tracts are then clustered
into the subdivisions based on the location of their midsag-
gital point. The tracts in each bundle are then aligned to a
template and the mean and standard deviation are calculated.

Having performed the above procedure on a set of five
normal cases, an average model of the fiber bundles is calcu-
lated by mapping the tracts onto the atlas coordinate. The
transformation parameters are calculated by registering the
baseline image of each case to that of the atlas. Such an at-
las is used as the prior map for mixture model clustering of
the callosal fibers of another normal case as shown in Fig. 5.
Once the model is constructed, any quantitative parameter can
be statistically analyzed in one subject or over a population.
As an example, Fig. 6 shows the variation of the curvature
along the tracts for two of the CC bundles for a healthy sub-
ject.

5. CONCLUSION

A novel approach was presented to build a statistical model
for a bundle of fiber tracts. This allows to construct an at-
las of the fiber tracts by averaging the bundle models over a
population. Using the model representation and with the atlas
as the prior map, expectation-maximization was performed to
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Fig. 5. Clustering of the corpus callosum from one of the
subjects into its subdivisions: the original fiber tracts (a) are
mapped into the atlas coordinate by registering the T2 base-
line image of the subject to that of the atlas. EM clustering
is used to cluster the resulting fiber tracts (b) into the bundles
(c) using the atlas model as the prior. The statistical model
of the bundles (d) can be used for quantitative analysis of the
subject.

cluster the fiber tracts in a mixture model framework. Once
the model is constructed, any quantitative parameter can be
statistically analyzed in one subject or over a population. The
method was successfully applied to cluster the callosal fibers
into Witelson subdivisions and to calculate quantitative para-
meters.
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Fig. 6. The mean and variation of the curvature along the
tracts calculated for (a) splenium and (b) genu in a normal
case.
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