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Overview
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Comparing and Identifying Shape

Question: What is “Shape” and what is “similar”?

Is shape just the outer shell of an object (B-Rep)?
What if the object contains cavities?

Shape should be invariant under translation and
rotation (congruence)!
How about scaling invariance (sometimes)?
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Comparing and Identifying Shape

Isometry invariance?

m m
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Comparing and Identifying Shape

Homotopy invariance?

http://en.wikipedia.org/wiki/Topology
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Different Representations and Parameters

Not only do spacial parameters differ, but:
surfaces and solids can be given in many different
representations (e.g. parametrized surfaces, 3d
polygonal models, implicitly defined surfaces ...).

Goal
To find a method for shape identification and comparison
that is independent of the given representation of the object.
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Identification and Comparison

Shape-Matching

1.234, 3.223, 6.475, 10.223, 16.443, ...

↔
Distance?

1.234, 3.223, 6.475, 10.223, 16.443, ...

0.) Prior alignment, scaling of the objects: normalization,
registration

1.) Computation of a simplified representation (Signature,
Shape-Descriptor)

2.) Comparison of the signatures, distance computation to
measure similarity
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Disadvantages of current methods

Disadvantages of current methods
Simplification too strong (too many objects with
identical signatures)
Missing invariance, complex pre-processing
Complicated comparison of signatures (e.g. graph
based signatures)
Only special representations (Voxels, Triangulations)
Depending on supplementary information / context
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New Signature: Shape-DNA

Invariant under translation, rotation and (where
required) scaling
No registration / normalization necessary
Surfaces & solids (even with cavities), arbitrary genus
Independent of representation
Isometry invariant
Simple distance computation of the signatures
No user interaction
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Sound of a drum

Sound is influenced by the material and the shape
A surface can be understood as an oscillating
membrane (fixed at the boundary)

We use the n-dim vector of the smallest n eigenvalues
(λ1, . . . , λn) of the Laplace operator ∆ as the signature:
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Definition of the Laplace-Spectrum

For a real-valued function f on a
Riemannian manifold M

Definition
Helmholtz Equation (Laplacian Eigenvalue Problem):

∆f = −λf

Solution: Eigenfunctions fi with corresponding
family of eigenvalues (Spectrum):

0 ≤ λ1 ≤ λ2 ≤ · · · ↑ +∞

Here Laplace-Beltrami Operator: ∆f := div(grad f )
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Laplace-Spectrum

Laplace-Beltrami Spectrum
Above definition holds for 2D-surfaces as well as for
3D-solids (independent of representation)

Dirichlet Boundary Condition
Function is fixed f ≡ 0 on the boundary of M

Neumann Boundary Condition

Derivative in normal direction is fixed ∂f
∂n ≡ 0 on the

boundary of M
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Computation of the Spectrum

1. Variational formulation of the Helmholtz Equation:∫∫
ϕ∆f dσ = −λ

∫∫
ϕf dσ

2. Discretization with the finite element method (up to
cubic form functions Fm for triangles and voxels and
quadratic for tetrahedra )

f =
n∑

m=1

umFm

3. Solution of the resulting general eigenvalue problem
Au = λBu
(sparse and sym.: Lanczos from ARPACK).

13 / 1



Martin Reuter

Isometric Invariant

Isometric objects have the same spectrum!

Spectrum is independent of object’s spacial position.
If M is scaled by s, signature is scaled by s−2.
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Continuous Dependency on Deformation

The spectrum
depends
continuously
on the shape.
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GWW Drums

The spectrum does not completely determine the isometry
class. Isospectral but not isometric (Gordon, Webb, Wolpert
- 1992) drums:

rare
concave
in 2D
only pairs
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Unwanted Holes - Neumann Condition

Dirichlet spectrum strongly depends on boundary
Unwanted holes (e.g. missing triangles) have large
influence
Change in topology changes spectrum discontinuously
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Unwanted Holes - Neumann Condition

Neumann spectrum does not change as drastically:

Sq Dir SqH Dir Sq Neu SqH Neu
λ1 19.739 24.730 00.000 00.000
λ2 49.348 49.530 09.870 09.831
λ3 49.348 61.051 09.870 09.841
λ4 78.957 87.482 19.739 19.710
λ5 98.696 99.390 39.478 39.336

Sq: Square, SqH: Square with hole,
Dir : Dirichlet, Neu: Neumann boundary condition
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Early Sensibility - Neumann Condition

(a) EV 0 (b) EV 3 (c) EV 11 (d) EV 17

(e) EV 0 (f) EV 3 (g) EV 11 (h) EV 17

 

 

0

Dirichlet boundary conditions.
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Early Sensibility - Neumann Condition

(i) EV 1 (j) EV 2 (k) EV 3

(l) EV 1 (m) EV 2 (n) EV 3 (o) EV 4

 

 

0

Neumann boundary conditions.
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Early Sensibility - Neumann Condition
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The first 150 eigenvalues of the cube with tail subtracted
from the eigenvalues of the cube for the Dirichlet and

Neumann case
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Geometric and Topological Information

Further geometric and topological information is contained
in the Spectrum (Heat-Trace Expansion):

Riemannian volume
Riemannian volume of the boundary
Euler characteristic for closed 2D manifolds
Number of holes for planar domains

It is possible to extract this data numerically from the
beginning sequence of the spectrum
(Reuter 2006 - first 500 eigenvalues).
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Weyl’s Formular

EW 2D-Sphere EW 3D-Cube
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Theorem (Weyl - 1912)

λn ∼ 4π
area(D) n for d = 2 and n→∞

λn ∼
(

6π2

vol(D)

) 2
3 n

2
3 for d = 3 and n→∞.
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Normalization

Two classes of spectra of spheres and ellipsoids with noise
blue : noisy spheres , red : noisy ellipsoids
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unnormalized area normalized
Shape analysis results depend on chosen
normalization
Unnormalized: Mainly differences in area/volume
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Normalization

Zoom-ins on the two spectra classes:
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blue : noisy spheres , red : noisy ellipsoids
Area/volume normalization shows if additional shape
differences exist.
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Influence of Discretization

Eigenmode 19 for Dirichlet boundary conditions for different
mesh refinements. Thin structures may be overlooked for

coarse discretizations (left).
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Influence of Noise

Spectra of spheres, different noise levels (area normalized)
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Essential to have identical noise levels
(increased noise→ increased surface area)
Violating this assumption may yield detection of noise
level differences instead of shape differences
(if shapes are similar or noise is huge).
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Normalization and Distance Computation

1. Computation of the first n eigenvalues (Shape-DNA)

2. Normalization (optional)
a) Surface area normalized
b) Volume normalized

3. Distance computation of the Shape-DNA (n-dim vector)
a) Euclidean distance←
b) Another p-norm
c) Hausdorff distance
d) Correlation . . .
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Identification in DB, Copyright protection,
Quality assessment

Different representations⇒
challenging to identify a protected object
challenging to retrieve a specific object from DB

6=
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Similarity Detection

Objects of comparison:

Back B1 Back B1’ Back B2 Hood H1 Hood H2

Square Isovol Isovol Disc Disc
S1 SR I1 I2 D1 D2 D3
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MDS Plot 2D - surface patches
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MDS Plot 3D - surface patches
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MDS Plot 2D - Medial Bar Deformation
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Triangulation of deformed spheres
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Triangulation of deformed spheres
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MDS Plot 2D - deformed spheres
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Global Shape Analysis of Medical Data

Global Shape Analysis on caudate nucleus
Populations (Brain MRI acquired on a 1.5-T General Electric
MR scanner):

SPD
32 female subjects diagnosed with Schizotypal Personality
Disorder (SPD)

NC
29 female normal control (NC) subjects

(Harvard Medical - Psychiatry NeuroImaging Laboratory)
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Rendering of the Caudate Nucleus

Coronal view.

Involved in memory function, emotion processing, and
learning.

The caudate nucleus was delineated manually by an expert.
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Iso Surfaces from MRI Data

Shape comparison either on volumetric data (e.g.
tetrahedrization or directly on binary voxel data):

or extraction of (smoothed) iso surfaces:
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Statistical Analysis

Permutation tests to compare group features
(200,000 permutations):

1 Two-sided, nonparametric scalar permutation test for
volume and surface area

2 Two-sided, nonparametric multivariate permutation test
based on maximum T-statistic for shapeDNA
(normalized eigenvalues)

3 Individual permutation test on shapeDNA components
to analyze individual significance
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Statistical Analysis

Statistically significant volume and surface area reductions
of SPD vs. normal control population
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Smoothed results prefix ’s’, unsmoothed results prefix ’us’.
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Statistical Analysis 2D

Maximum t-statistic results of area normalized case
(indicating true shape differences)
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For the first n eigenvalues for individual eigenvalues

Black horizontal line indicates the 5% significance level.
→ Smoothing leads to information loss.
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Statistical Analysis 3D

For 3D analysis we worked with
both Dirichlet and Neumann spectra
on original voxel domain and dual voxel graph
(to introduce more inner nodes).

Pixel domain (left) and its dual (right)
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Statistical Analysis 3D - Dirichlet

Accumulated statistic
(unnormalized Dirichlet regular and dual)

0 50 100 150 200

  0.05

   0.1

   0.2

   0.4

   0.7

     1

p

Number of Eigenvalues N
0 50 100 150 200

  0.05

   0.1

   0.2

   0.4

p

Number of Eigenvalues N

Left (regular): No statistical significance due to too low
resolution
Right (dual): Statistical significance when high
eigenvalues are involved.
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Statistical Analysis 3D - Neumann

Neumann Spectra show significant differences very early:
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(p) Regular, unit brain volume.
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(q) Dual, unit brain volume.

Accumulated statistic, Neumann boundary conditions.
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Statistical Analysis 3D - Neumann

Checking for true shape differences (unit caudate volume):
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(r) Regular, unit caudate vol-
ume.
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(s) Dual, unit caudate volume.

Accumulated statistic, Neumann boundary conditions.
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Conclusion

Volumetric spectra are applicable for 3D shape analysis
Neumann spectrum has advantages especially for low
resolutions
Higher Eigenvalues yield significant results, indicating
differences in smaller features
Compare shape based on feature size (multiresolution)
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Thanks

Thank you very much for your attention !

Publications can be found at
http://reuter.mit.edu
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