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IMliifr Comparing and Identifying Shape

martin Reuter  Question: What is “Shape” and what is “similar’?

o |s shape just the outer shell of an object (B-Rep)?
o What if the object contains cavities?

@ Shape should be invariant under translation and
rotation (congruence)!

@ How about scaling invariance (sometimes)?
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Martin Reuter

Comparing and Identifying Shape

@ Homotopy invariance?

http://en.wikipedia.org/wiki/Topology
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IliiT Different Representations and Parameters

Martin Reuter

Not only do spacial parameters differ, but:

o surfaces and solids can be given in many different
representations (e.g. parametrized surfaces, 3d
polygonal models, implicitly defined surfaces ...).

Goal
To find a method for shape identification and comparison
that is independent of the given representation of the object.



IMliif Identification and Comparison

Martin Reuter

Shape-Matching

0.) Prior alignment, scaling of the objects: normalization,
registration

1.) Computation of a simplified representation (Signature,
Shape-Descriptor)

2.) Comparison of the signatures, distance computation to
measure similarity



Illii’ Disadvantages of current methods

Martin Reuter

Disadvantages of current methods

o Simplification too strong (too many objects with
identical signatures)

@ Missing invariance, complex pre-processing

o Complicated comparison of signatures (e.g. graph
based signatures)

@ Only special representations (Voxels, Triangulations)
@ Depending on supplementary information / context



IMliif New Signature: Shape-DNA

hape-DNA

Martin Reuter
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Invariant under translation, rotation and (where
required) scaling
No registration / normalization necessary
Surfaces & solids (even with cavities), arbitrary genus
Independent of representation
Isometry invariant
Simple distance computation of the signatures

©

No user interaction



IMlifr Sound of a drum

martinReuter  Sound is influenced by the material and the shape

@ A surface can be understood as an oscillating
membrane (fixed at the boundary)

o We use the n-dim vector of the smallest n eigenvalues
(A1,...,A\n) of the Laplace operator A as the signature:

(J/![/f /JJ/\/r)
WOOHOOHY
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Martin Reuter

Definition of the Laplace-Spectrum

For a real-valued function f on a
Riemannian manifold M

Definition
Helmholtz Equation (Laplacian Eigenvalue Problem):

Af = —\f

Solution: Eigenfunctions f; with corresponding
family of eigenvalues (Spectrum):

0< M <X T4+

Here Laplace-Beltrami Operator: Af := div(grad f)



INliif Laplace-Spectrum

Martin Reuter
Laplace-Beltrami Spectrum

o Above definition holds for 2D-surfaces as well as for
3D-solids (independent of representation)

Dirichlet Boundary Condition
Function is fixed f = 0 on the boundary of M

Neumann Boundary Condition

Derivative in normal direction is fixed % = 0 on the
boundary of M



Martin Reuter

Computation of the Spectrum

1. Variational formulation of the Helmholtz Equation:

[[eAfdo ==X [[ ¢f do

2. Discretization with the finite element method (up to
cubic form functions F, for triangles and voxels and
quadratic for tetrahedra )

n
f= Z UmnFm
m=1

3. Solution of the resulting general eigenvalue problem
Au = \Bu
(sparse and sym.: Lanczos from ARPACK).



IMlii’ Isometric Invariant

martin Reuter  |[SOmetric objects have the same spectrum!

(J// ap /JJ/\/; (N)/mf zJJ/\/;
DVBHOERQ MOOHOONQ
Spectrum is independent of object’s spacial position.
If M is scaled by s, signature is scaled by s—2.

© ©
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Illiifr Continuous Dependency on Deformation

Martin Reuter
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Martin Reuter

GWW Drums

The spectrum does not completely determine the isometry
class. Isospectral but not isometric (Gordon, Webb, Wolpert
- 1992) drums:

o rare BN

o concave
in 2D

o only pairs /




Illiif Unwanted Holes - Neumann Condition

Martin Reuter
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o Dirichlet spectrum strongly depends on boundary

o Unwanted holes (e.g. missing triangles) have large
influence

o Change in topology changes spectrum discontinuously

/1



Illiif Unwanted Holes - Neumann Condition

Martin Reuter

@ Neumann spectrum does not change as drastically:

Sq Dir | SqH Dir | Sq Neu | SqH Neu
A | 19.739 | 24.730 | 00.000 | 00.000
Ao | 49.348 | 49.530 | 09.870 | 09.831
Az | 49.348 | 61.051 | 09.870 | 09.841
Ay | 78.957 | 87.482 | 19.739 19.710
s | 98.696 | 99.390 | 39.478 | 39.336

Sqg: Square, SqH: Square with hole,
Dir: Dirichlet, Neu: Neumann boundary condition



Illiir Early Sensibility - Neumann Condition

Martin Reuter .
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Dirichlet boundary conditions.



Illiir Early Sensibility - Neumann Condition
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Neumann boundary condltlons.
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Illiir Early Sensibility - Neumann Condition

Martin Reuter
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The first 150 eigenvalues of the cube with tail subtracted
from the eigenvalues of the cube for the Dirichlet and
Neumann case
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Geometric and Topological Information

Further geometric and topological information is contained
in the Spectrum (Heat-Trace Expansion):

o Riemannian volume

@ Riemannian volume of the boundary

o Euler characteristic for closed 2D manifolds
@ Number of holes for planar domains

It is possible to extract this data numerically from the
beginning sequence of the spectrum
(Reuter 2006 - first 500 eigenvalues).

22



Illir Weyl’s Formular

Martin Reuter EW 2D-Sphe|’e EW 3D-Cube

o

Theorem (Weyl - 1912)
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Normalization

Two classes of spectra of spheres and ellipsoids with noise
blue : noisy spheres, red : noisy ellipsoids

150,
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unnormalized area normalized

o Shape analysis results depend on chosen
normalization

@ Unnormalized: Mainly differences in area/volume

24/
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Illiifr Normalization

Martin Reuter

Zoom-ins on the two spectra classes:
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10- | 200r
5 100
GO 5 iO 1‘5 25 25 30 35 O0 5 iO 1‘5 2b 25 éO 35
blue : noisy spheres , red : noisy ellipsoids

o Area/volume normalization shows if additional shape
differences exist.
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IMliiT Influence of Discretization

Martin Reuter

Eigenmode 19 for Dirichlet boundary conditions for different
mesh refinements. Thin structures may be overlooked for
coarse discretizations (left).
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IMlii’ Influence of Noise

Spectra of spheres, different noise levels (area normalized)

Martin Reuter
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o Essential to have identical noise levels
(increased noise — increased surface area)

o Violating this assumption may yield detection of noise

level differences instead of shape differences
(if shapes are similar or noise is huge).
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Illiif Normalization and Distance Computation

Martin Reuter

1. Computation of the first n eigenvalues (Shape-DNA)

2. Normalization (optional)

a) Surface area normalized
b) Volume normalized

3. Distance computation of the Shape-DNA (n-dim vector)

a) Euclidean distance —
b) Another p-norm

¢) Hausdorff distance

d) Correlation ...



I .
i Quality assessment
Different representations =
o challenging to identify a protected object
o challenging to retrieve a specific object from DB

Martin Reuter

(N)/u/f De-] /\/r
WOHOGOHOOH

Identification in DB, Copyright protection,




IMliif Similarity Detection

martinreuter ~ Objects of comparison:

Back B1 Back B1’ Back B2 Hood H1
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IMliifr MDS Plot 2D - surface patches

Martin Reuter
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IMliif MDS Plot 3D - surface patches

Martin Reuter




Illiifr MDS Plot 2D - Medial Bar Deformation
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MDS Plot 2D - deformed spheres
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INliir Global Shape Analysis of Medical Data

Martin Reuter

Global Shape Analysis on caudate nucleus
Populations (Brain MRI acquired on a 1.5-T General Electric
MR scanner):

SPD

32 female subjects diagnosed with Schizotypal Personality
Disorder (SPD)

NC
29 female normal control (NC) subjects

(Harvard Medical - Psychiatry Neurolmaging Laboratory)



Illiifr Rendering of the Caudate Nucleus

Martin Reuter

£~ o\
Coronal view.

Involved in memory function, emotion processing, and
learning.
The caudate nucleus was delineated manually by an expert.
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IMliir Iso Surfaces from MRI Data

Shape comparison either on volumetric data (e.g.
tetrahedrization or directly on binary voxel data):

Martin Reuter
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Illiif Statistical Analysis

Martin Reuter

Permutation tests to compare group features
(200,000 permutations):

@ Two-sided, nonparametric scalar permutation test for
volume and surface area

@ Two-sided, nonparametric multivariate permutation test
based on maximum T-statistic for shapeDNA
(normalized eigenvalues)

@ Individual permutation test on shapeDNA components
to analyze individual significance
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Martin Reuter

Statistical Analysis

Statistically significant volume and surface area reductions
of SPD vs. normal control population
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Smoothed results prefix ’s’, unsmoothed results prefix 'us’.
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Illiif Statistical Analysis 2D

varinreuter  Maximum t-statistic results of area normalized case
(indicating true shape differences)
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0.001 ¥ 0.001
0.0001; 0.0001
O0 20 40 60 80 100
EigenvaluesN Egeﬁ wal sN
For the first n eigenvalues for individual eigenvalues

Black horizontal line indicates the 5% significance level.
— Smoothing leads to information loss.
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IMliif Statistical Analysis 3D

Martin Reuter

For 3D analysis we worked with
@ both Dirichlet and Neumann spectra

@ on original voxel domain and dual voxel graph
(to introduce more inner nodes).

oooooo

ooooooooo

Pixel domain (Ieft) and its dual (right)

43/



Illiif Statistical Analysis 3D - Dirichlet

Martin Reuter Accumulated statistic
(unnormalized Dirichlet regular and dual)
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o Left (regular): No statistical significance due to too low
resolution

@ Right (dual): Statistical significance when high
eigenvalues are involved.
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Illiif Statistical Analysis 3D - Neumann

Martin Reuter

Neumann Spectra show significant differences very early:
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(p) Regular, unit brain volume. (q) Dual, unit brain volume.

Accumulated statistic, Neumann boundary conditions.
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Illiif Statistical Analysis 3D - Neumann

Martin Reuter

Checking for true shape differences (unit caudate volume):
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(r) Regular, unit caudate vol- (s) Dual, unit caudate volume.
ume.

Accumulated statistic, Neumann boundary conditions.
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Illif Conclusion

Martin Reuter

o Volumetric spectra are applicable for 3D shape analysis

@ Neumann spectrum has advantages especially for low
resolutions

o Higher Eigenvalues yield significant results, indicating
differences in smaller features

@ Compare shape based on feature size (multiresolution)
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Thank you very much for your attention !

Publications can be found at
http://reuter.mit.edu
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