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F
unctional magnetic resonance imaging (fMRI) is a
rapidly growing technique for studying the brain in
action. Since its creation [1], [2], cognitive scientists
have been using fMRI to understand how we remember,

manipulate, and act on information in our environment.
Working with magnetic resonance physicists, statisticians, and
engineers, these scientists are pushing the frontiers of knowl-
edge of how the human brain works.

The design and analysis of single-subject fMRI studies has
been well described. For example, [3], chapters 10 and 11 of
[4], and chapters 11 and 14 of [5] all give accessible
overviews of fMRI methods for one subject. However, while
the appropriate manner to analyze a group of subjects has been
the topic of several recent papers, we do not feel it has been
covered well in introductory texts and review papers.
Therefore, in this article, we bring together old and new work
on so-called group modeling of fMRI data using a consistent
notation to make the methods more accessible and compara-
ble.

The analysis of single-subject fMRI data has drawn heavily
on signal processing techniques. As discussed in the follow-
ing, linear time invariant systems are the standard way to spec-
ify the model for the experimentally related signal in fMRI.
When more than one subject is considered, the model must
account for differing response magnitudes in each subject.
While it is easy to specify a multisubject model that fits dif-
ferent responses for each subject, standard inference proce-
dures do not account for the random subject-to-subject
variation in response magnitude. When this random variation
is neglected, the inferences are specific to the cohort of sub-
jects studied. As most experimenters want to make inference
on the population average magnitude, inference methods must
account for heterogeneity in the population, and specifically, a
significant result must be based on statistical confidence that
the population from which these subjects were drawn shows a
given effect on average. Population inference is the goal of
group modeling, and it is a statistical challenge not met by
direct application of methods found in a first-year statistics
course. Basic statistics and regression usually only cover ordi-
nary least squares (OLS), linear regression, and other fixed-
effects models that do not yield population inferences. 

In the next section, we distinguish fixed-effects models
from mixed-effects models and will motivate the importance

of a mixed-effects model for group fMRI analysis. The sec-
tions following that describe single-subject modeling and
show a general method for estimating the group model.

Fixed-Effects Versus Mixed-Effects
To motivate the need of a mixed-effects analysis, we use a
simple nonimaging example. Instead of measuring brain acti-
vation, perhaps we wish to compare hair length between gen-
ders. We wish to determine if there is evidence that American
men and women have different length hair. It isn’t feasible to
measure every American, so we will randomly select men and
women from the whole population. Based on just these two
samples, we will try to make a statement, or inference, about
all Americans. In order to make this comparison, we need the
distributions of hair length for both men and women, and once
these are obtained, a statistical comparison can determine
whether or not they differ.

The experiment is conducted by randomly choosing four
men and four women and for each randomly selecting a single
hair from their heads and measuring it (in the following, we
consider measuring multiple hairs). For each group, note that
there are two sources of variation: within individual and
between individual. The between-individual variation stems
from each person having a different hair cut and hence differ-
ent hair length, while the within-individual variation is present
since, on any one person, the length of each hair varies over
the head. Let σ 2

W be the within-subject variance and σ 2
B the

between-subject variance. The top eight distributions in Figure
1 show the hair length distributions for the four men and four
women. These distributions describe the relative frequency of
hair length of a randomly selected hair from a single individ-
ual. Here we have assumed that the variation of a given indi-
vidual’s hair length is 1 in (σ 2

W = 1).
If our population of interest is precisely these eight men and

women, then between-subject variation can be neglected and a
fixed-effects analysis can be used. The question to be
answered is: How does the hair length of these particular four
men compare to that of these particular four women? The
resulting fixed-effects distributions are shown in Figure 1,
below the individuals’ distributions. Each gender’s fixed-
effect variance is σ 2

FFX = (1/4)σ 2
W = 0.25.

If we are not just interested in these eight men and women
but the comparison of hair length between all men and
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women, the next step is to construct population hair length dis-
tributions. A mixed model treats the four men and four women
as randomly selected, not as the entire population of interest,
and it takes into consideration the between-individual vari-
ances as well as the within-individual variances. The bottom of
Figure 1 shows hair length distributions for men and women
when the between-individual variance is σ 2

B = 49 in. The vari-
ance of each gender’s group distributions has two contribu-
tions:

σ 2
MFX = σ 2

W

4
+ σ 2

B

4
= 1

4
+ 49

4
= 12.5.

Note that if the fixed-effects distributions were wrongly used
to make a conclusion about all men and women, they would
show that males have shorter hair than females. In fact, the
mixed-effects distributions show considerable overlap, and we
would not, based on this small sample, be able to conclude
that men and women have different hair length.

One simplification here is that we only measured one hair
per person. It would be better to randomly select multiple
hairs, measure each, and take the average. If we instead had
measured 25 hairs per person, then the distribution of each
subject’s average would have variance σ 2

W/25; for the fixed
effect distribution 

σ 2
FFX = 1

4
× σ 2

W

25
= 0.01,

and for the mixed-effects distribution 

σ 2
MFX = 1

4
× σ 2

W

25
+ 1

4
σ 2

B = 12.26.

Observe that since σ 2
B is so much larger than σ 2

W, increasing
intrasubject precision has little impact on the mixed-effects
variance.

Returning to fMRI, the basic issues are essentially the same.
Instead of measuring multiple hairs, we are measuring the
brain activation at a particular brain location multiple times. In
multiple subject fMRI studies, most often, the interest is in
making conclusions about populations and not specific sub-
jects, and hence a mixed-effects method is necessary to get
valid inferences in group fMRI.

Single-Subject fMRI Analysis
The basis of fMRI is the blood-oxygen-level-dependent
(BOLD) effect. Due to differential magnetic susceptibility
of oxygenated (oxygen-rich) hemoglobin and deoxygenated
hemoglobin, the BOLD effect results in greater MRI inten-
sity when brain activity increases (see, e.g., [6] for details).
Since the BOLD effect is related to blood flow and volume,
which do not change instantaneously, the BOLD response is
temporally blurred and delayed relative to the experimental
stimuli presented to the subject. Any intrasubject model
must account for these effects (see Figure 2).

Consider a specific experiment, which we will revisit
throughout the article [7]. In 12 healthy subjects, the investiga-
tor wanted to study the activation of higher-level motor areas

during visually cued right-hand finger movement where the
task was either tapping the index finger only, sequentially tap-
ping the fingers, or randomly tapping the fingers. The hypoth-
esis is that motor-related brain activity would increase with
the complexity of the task, where index tapping is the most
simple and random tapping is the most complex task. The
design consisted of 30-s pseudorandomly ordered blocks of
rest and the three visually cued finger tapping tasks [7]. Figure
2 displays the experimental design for this study.

All modeling discussed here is applied in a voxelwise
fashion (a voxel is a single volume-element), i.e., each model
is fitted to the data associated with each voxel separately.
Intrasubject fMRI modeling is generally based on a linear
time-invariant systems approach to the BOLD response. The
experimental stimuli are represented by x(t), consisting of
just zeros and ones, indicating when a stimulus is present.
For example, a block design consists of stimuli that are on
for a duration of 2–30 s and would be represented in x(t) by
a box-car, and an event-related design consists of transient
stimuli, which are represented by delta functions. In practice,
there may be multiple experimental conditions, each with
indicator xj(t), j = 1, . . . , J. Using an assumed hemodynam-
ic response function (HRF) h(t), the noiseless predicted
response is then the convolution of xj(t) and h(t)—
(h ⊗ xj)(t). The predicted response is discretized into {xjt}T

t=1
and used to create a predictor for the observed data {yt}T

t=1.
The fitted model is then yt = β0 + ∑

xjtβj + εt , where εt is
mean zero random error. Figure 2 shows both the experimen-
tal stimuli and the experimental predictors that result from
the convolution with an HRF for the finger tapping experi-
ment described previously.

In matrix notation, for the kth of N subjects, we write
Yk = Xkβk + εk, where Yk is a Tk vector of the observed data,
Xk is the Tk × p (p = J + 1) predictor matrix, and εk is the Tk

vector of random errors [Figure 3(a), top]. Note that column 1
of Xk consists of a 1 for the intercept followed by columns
{xtj}T

t=1, j = 1, . . . , J. 
If the errors εk are independent and have homogeneous vari-

ance σ 2
k , then the Gauss-Markov theorem [8] gives the mini-

mum variance, unbiased estimate of βk as

β̂OLS
k = (

XT
k Xk

)−1
XT

k Yk, (1)

which has variance Cov (β̂OLS
k ) = (XT

k Xk)
−1σ 2

k . The OLS
residuals are Rk = AkYk, where Ak = I − Xk(XT

k Xk)
−1XT

k is the
residual forming matrix. The unbiased estimate of the variance
of the errors is

σ̂ 2OLS
k = 1

νk
AT

k Ak, (2)

where νk = Tk − p are the degrees of freedom. This method is
known as OLS. As found by many authors, residual error in
fMRI is not independent and exhibits excess variation at low
frequencies (sometimes called 1/ f -type autocorrelation)
[9]–[12]. When Cov(εk) = Vkσ

2
k 
= Iσ 2

k , where Vk is the corre-
lation matrix, estimates obtained from (1) will still be unbiased
(E(β̂k) = βk , where E(·) denotes expectation) but will not
have optimal precision (minimum variance), and the estimate
of residual variance (2) will be biased.

The optimal approach with dependent errors is whitening, or
decorrelation of the data and model. Instead of working directly
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with (1), we premultiply by a matrix that renders the errors
independent: V(−1/2)

k Yk = V(−1/2)

k Xkβk + V(−1/2)

k εk , where
V(−1/2)

k is a matrix such that V(−1/2)

k VkV−(1/2)

k
T = I. We rewrite

this as

Y∗
k = X∗

kβk + ε∗
k , (3)

where Y∗
k , X∗

k , ε∗
k are the whitened data, model, and errors,

respectively. The Gauss-Markov estimate of βk is now just the
OLS estimate using Y∗

k and X∗
k :

β̂GLS
k = (

X∗T
k X∗

k

)−1
X∗T

k Y∗
k (4)

and is referred to as the generalized least squares (GLS) esti-
mate. The estimate β̂GLS

k has optimal variance, given by

Cov
(
β̂GLS

k

) = σ 2
k

(
X∗T

k X∗
k

)−1
. (5)

Similarly, the unbiased estimate of whitened error variance is

σ̂GLS
k = 1

νk

(
Y ∗

k − X ∗
k β̂GLS

k

)T(
Y ∗

k − X ∗
k β̂GLS

k

)
. (6)

In short, with knowledge of the whitening matrix V
− 1

2
k , opti-

mal estimates for βk can be found with GLS.
There are two important details to single-subject modeling.

First, whitening assumes that the true error correlation Vk is
known precisely. In practice, Vk must be estimated from the
data, and an estimate may be biased and highly variable,
potentially corrupting the whitening process and yielding esti-
mates of βk and σ 2

k that are worse than OLS. In fMRI, it is
generally acknowledged that some sort of spatial regulariza-
tion of V̂k is required [12]–[16]. This approach reduces the
variability in V̂k by pooling over space either locally [12]–[14]
or globally [15], [16].

The other important detail is the use of contrasts to sum-
marize evidence for a particular effect. Rarely does an inves-
tigator have interest in all p elements of βk. Rather, interest
typically focuses on one condition versus another or an aver-
age of conditions versus another. For example, in the finger
tapping experiment, we may only be interested in whether
activation from random finger tapping (Condition 3) is
greater than sequential finger tapping (Condition 2), in
which case we define contrast c = [0 0 − 1 1] and esti-
mate the quantity cβk = βk3 − βk2 with cβ̂k [Figure 3(a), bot-
tom]. The variance of the estimated contrast is

Cov(cβ̂k) = c(Cov(β̂k))c
T. (7)

Given user’s interest in contrasts of βk, in the remainder of
this article we focus on inference of cβk.

Inference on cβk is made with a ratio of the estimate cβ̂k to

its standard error. In contrast to the true standard deviation

(

√
Cov(cβ̂k)), the standard error of an estimator is its estimat-

ed standard deviation (
√

Ĉov(cβ̂k)). If the estimated BOLD

response magnitude is large relative to its standard error, we

conclude that the result was unlikely to have arisen by chance.

When the random errors have a Gaussian distribution, the

ratio follows a Student’s T distribution, and it forms the basis

of inference for linear models.

Model
The starting point for our statistical modeling of group fMRI
data is voxel-aligned data. That is, at each voxel, we have data
from each subject that have been motion-corrected, aligned to
a standard atlas brain, and perhaps smoothed (see “Praparation
for Multisubject Modeling”). Before we set out the various
models used for group modeling, we define notation.

Notation
It is useful to specify the complete model in stages, a first or
lower level, where a model is fit for each subject, and a sec-
ond level, which combines the different subjects.

As shown previously, the general linear model for the kth
subject of N subjects is

Yk = Xkβk + εk, (8)

where Yk is the Tk × 1 vector of fMRI response data, Xk is the
Tk × p design matrix, βk is a vector of p parameters, and the
error vector of length Tk is Gaussian distributed with variance
σ 2

k and correlation Vk, εk ∼ N(0, σ 2
k Vk). Subjects are indepen-

dent, and so Cov(εk, ε
′
k) = 0 for k 
= k ′. Note that while each

subject can have a differing number of scans (Tk), all of the
design matrices Xk must have the same number of columns,
each column expressing the same effect in each subject’s data.
In general, Vk is not diagonal and will express the autocorrela-
tion that is present in fMRI data; a typical assumption is <au:
Please spell out.> AR(1) noise, such that (Vk)ij = ρ

|i− j|
k ,

where ρk is the first-order autocorrelation.
These N first-level models can be concisely expressed as

Y = Xβ + ε, (9)

where Y = [YT
1 , . . . , YT

N ]T , X = diag (X 1, . . . ,X N ) ,
β = [βT

1 , . . . , βT
N ]T , and ε = [εT

1 , . . . , εT
N ]T with covariance

V = Cov(ε) = diag(σ 2
1 V1, . . . , σ 2

N VN) (diag (·) defines a
block-diagonal matrix); let T = ∑

Tk be the total number of
scans in the entire dataset.

The second-stage analysis is used to relate subject-specific
parameters βk to population parameters βg:

β = Xgβg + εg. (10)

Assuming all first-level parameters are taken to the second
level, Xg is a Np × pg second-level design matrix, βg is a vec-
tor of length pg that contains the second-level parameters,
and εg ∼ N(0, σ 2

g Vg), where Vg is a block-diagonal matrix
with blocks Vgk ; note that we separate overall group variance
σ 2

g from the correlation matrix Vg. Typically, Xg has a very
simple form, with columns of ones to test the mean response
over subjects. The estimation of the parameters in the two-
stage analysis is a challenge, since β occurs in both (9) and
(10), and β is not observed. While there are standard methods
for fitting this so-called hierarchical model [17], they are
based on all T data points and involve iterative optimization.
Since a typical group analysis can have T = 20, 000 scans,
with each scan having 100,000 voxels, direct application of
these methods is generally not practical. A more computa-
tionally efficient approach is to build a group model-based
summary statistics, described next.

Summary Statistics Approach
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The summary statistics approach is a natural approach that
involves first estimating β from (9) then estimating βg using a
modified version of (10). Because the first-level model (9) is
separable by subject, β̂ = [β̂T

1 , . . . , β̂T
N ]T can be found sub-

ject-by-subject with (4). The group model based on β̂ is

β̂ = Xgβg + εg + (β̂ − β)

= Xgβg + εg̃. (11)

Note that (10) models the unobservable, true mean responses
β for each subject, while (11) models the observed, estimated
responses β̂ for each subject. The summary statistic model’s
errors εg̃ have mean 0 variance

Vg̃ = (XTV−1X)−1 + σ 2
g Vg, (12)

where the first component can also be written
diag({σ 2

k (X∗T
k X∗

k )
−1}), and reflects the intrasubject variance-

covariance of the β̂ks, while the second component indicates
how variable the true effect is between subjects. If Vg̃ is
known, then the GLS estimate of βg is given by,

β̂g =
(

X∗T
g X∗

g

)−1
X∗T

g β̂∗ (13)

Cov
(
β̂g

)
= σ 2

g̃

(
X∗T

g X∗
g

)−1
, (14)

where X∗
g = V

− 1
2

g̃ Xg and β̂∗ = V
− 1

2
g̃ β̂ . Assuming Gaussian ε

and εg, it can be shown that this summary-statistic-based esti-
mate is identical to that found using all of the data [18]. 

A crucial observation is that this summary statistic approach
requires both the subject-level parameter estimates β̂k and
their variances σ 2

k (X∗T
k X∗

k )
−1. If OLS is used with (11), ignor-

ing the covariances, often the estimates will be suboptimal and
the standard errors incorrect. An important special case when
second-level OLS and GLS estimates coincide involves con-
trasts.

As discussed previously, the goal is usually inference on a
particular contrast of parameters cβk. In this case, the whole β̂
doesn’t need to be brought to the second level, only the N con-
trasts [18]; β̂ becomes β̂cont = [cβ̂1, . . . , cβ̂N ]T , V becomes a
diagonal matrix with entries σ 2

k c(X∗
k X∗

k )
−1cT , and Vg will have

a simple form, typically just IN . If the intrasubject contrast
variance is homogeneous, i.e.,

σ 2
k c(X∗T

k X∗
k )

−1cT = σ 2
k′c(X∗T

k′ X∗
k′)

−1cT

for k 
= k′, then the OLS and GLS estimators βg are equivalent
[19].

Figure 3(b) shows an example of a second-level model con-
sisting of a single contrast from each of 12 subjects. This
model produces group-level estimates of the contrast for the
group of the first six subjects (βg1) and the last six subjects
(βg2). The group model is given by (11), except the dependent
variable is β̂cont .

The following sections introduce different summary statis-
tics methods that have been developed. Due to the massive
size of fMRI datasets, standard statistical software is not use-
ful, and custom software is required. Because of this, the first
three sections are organized around statistical methods impli-

mented in three widely used software packages, FSL
(http://www.fmrib.ox.ac.uk/fsl), fMRIstat (http://www.math
.mcgill.ca/keith/fmristat), and SPM (http://www.fil.ion
.ucl.ac.uk/spm). While all of the methods use the model
described above, they differ in how they find estimates for the
between-subject variance Vg̃ . 

FSL
The FMRIB software library (FSL) uses the summary statis-
tics group model described previously [(9) and (11)] [18],
with the restriction that only a single contrast per subject is
taken to the second level. They use Bayesian methods to
estimate βg while accounting for uncertainty in the esti-
mates of σ 2

g (see “Bayesian Versus Classicial Inference”).
First we review FSL’s first-level modeling methods. 

As indicated previously, the autocorrelation Vk is needed
to find optimal intrasubject estimates β̂k (4). FSL uses three
steps to obtain V̂k for each voxel. First, a high-pass filter is
applied to data and the model to remove low-frequency noise
and reduce nonstationarity. Second, OLS residuals
(Yk − β̂OLS) are used to estimate an autocorrelation function
(ACF) which is regularized with a Tukey taper. Finally, the
voxelwise ACFs are further regularized with a spatial
smoothing; since autocorrelation tends to vary more between
tissue type and less within, a nonstationary spatial smoothing
is used, which accounts for tissue type as determined by
functional image intensity. The resulting autocorrelation esti-
mate V̂k is used in (4) and (5). 

Inference on βg is based on its posterior distribution condi-
tional on the data Y, p(βg|Y). However, the posterior p(βg|Y)

doesn’t have a closed form, so a two-stage method is used to
find a posterior mean estimate β̂FSL

g ; first, a fast approxima-
tion is used, followed by a slower Markov chain Monte
Carlo (MCMC).

At each voxel, the posterior of βg is approximated as a
multivariate T with noncentrality parameter β̂g, variance para-
meters Cov(β̂g) [see (13) and (14)], and degrees of freedom
νg. The noncentrality and variance parameters depend on the
unknown mixed-effects covariance Vg̃ . The fast method
assumes large intrasubject degrees of freedom νk, so the intra-
subject contribution to Vg̃ is assumed known without error,
leaving only intersubject variance σ 2

g to be estimated. A max-
imum a posteriori<AU: correct?> estimate σ̂ 2FSL

g is found
using iterative optimization, and the degrees of freedom are
estimated conservatively as N − pg.

The point estimates of σg and βg are used to find the poste-
rior probability of a positive response<AU: should P in the
equation be in italics?> P(βg > 0|Y). By equating the poste-
rior probability to a Z statistic via a P-value, voxelwise Z sta-
tistics are created that offer classical tests of the null
hypothesis Ho : βg = 0; only voxels with Z statistics close to
the desired significance threshold continue on to the next
stage. The second stage employs a slower, more accurate
MCMC method of estimation [18], which accounts for
uncertainty in σg by estimating the effective degrees of free-
dom νg of the posterior. This stage produces more accurate
test statistics for the voxels that were near the threshold in
the first stage, and these are used to locate voxels where the
group-level parameters are significant. 

fMRIstat
Worsley et al. [14] developed a summary statistics approach
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that is implemented in the fMRIstat package. As with FSL’s
method, GLS is used to estimate the parameters of the first
level, and only a single contrast per subject is taken from the
first to the second level. One important aspect of the method
is that the random-effects variance σ 2

g̃ is estimated using
restricted maximum likelihood (ReML), the standard classi-
cal variance estimation method (see “Maximum Likelihood
and Restricted Maximum Likelihood”). Another unique
aspect is the regularization σ̂ 2

g , which is used to increase the
effective degrees of freedom of the variance estimate.

At the first level, an AR autocorrelation model is fit to a
sample covariance matrix of the OLS residuals. The OLS
residuals have covariance RkVkRT

k 
= Vk, and so the AR coeffi-
cients are biased. After applying a bias correction, the AR
coefficients are spatially smoothed and then used to create
V̂(−1/2)

k (see [20] and [21] for recent work on this smoothing
step). GLS estimates for βk and its variance are as before [(4)
and (5)].

The second term of Cov(εg̃), the between-subject variance, is
estimated with ReML, σ̂ 2ReML

2 . Since group size N is often
small, this variance estimate is itself very variable; equivalently,
it has very low degrees of freedom. In contrast, the pooled
fixed-effects variance

σ̂ 2
F =

∑
k

νk∑
k νk

σ̂ 2
k c

(
X∗T

k X∗
k

)−1
cT (15)

has very high degrees of freedom, 
∑

k νk. To borrow strength
from this high-precision variance estimate, Worsley et al. [14]
considered the following manipulation of the mixed-effect
variance

σ̂ 2
F + σ̂ 2

g = σ̂ 2
F + σ̂ 2

g

σ̂ 2
F

σ̂ 2
F ≈ smooth

(
σ̂ 2

F + σ̂ 2
g

σ̂ 2
F

)
σ̂ 2

F . (16)

That is, since the ratio of mixed- to fixed-effect variance
appeared to have little structure, they smooth that ratio. By
solving for random-effect variance, they obtain an estimate
consisting of a smooth image times<AU: multiplied by?> a
high-degree-of-freedom variance estimate:

σ̂ 2fmristat
g = smooth

(
σ̂ 2

g

σ̂ 2
F

)
σ̂ 2

F . (17)

Whereas FSL used MCMC to find accurate degrees-of-
freedom, fMRIstat selects the full width at half maximum
(FWHM) of variance-ratio smoothing to obtain effective
degrees of freedom of at least 100. Of course, this decrease in
variability of the variance estimate comes at the cost of an
increase in the bias of the variance estimate.

Finally, the T statistics are formed by the ratio of β̂g and its
standard error (using σ̂ 2fmristat

g ) and are used to make infer-
ences on the activation within each voxel.

SPM2
The SPM2 package employs the theory developed by Friston
et al. in [22] and [23]. SPM2 also uses GLS with an estimate
of V̂k to estimate the first level. It differs from the previous
two methods by only requiring the estimates of the mean para-
meters βk, not both the mean and covariance parameters, to be
taken from the first level into the second level. Such a simpli-
fication, though, requires an additional assumption, that of

homogeneous intrasubject variance (over subjects). The bene-
fit is that this allows more than a single contrast from each
subject to be estimated at the second level. The second-level
model is then estimated using ReML. 

First, we review SPM2’s first-level modeling. The intrasub-
ject autocorrelation Vk is modeled with a two-term Taylor
series approximation to an AR(1) model, ρ = 0.2. The auto-
correlation estimates are based on the sample covariance of
the raw data Yk; this avoids the bias due to the covariance of
residuals but can introduce bias if a strong signal is present.
While FSL and fMRIstat both estimate Vk separately for each
voxel, SPM2 assumes the autocorrelation is the same for all
voxels. To bias the global estimate towards the most impor-
tant voxels, only those voxels surviving an overall F test at
level 0.001 contribute to the sample covariance matrix. Note
that while Vk is global, σ 2

k is estimated separately at each
voxel. The resulting V̂k is used to find GLS estimates for βk

and its variance, as above.
At the second level, SPM2 is capable of obtaining group-

level estimates of all parameters in βk or subsets of parame-
ters from the first level simultaneously, instead of only one
contrast at a time as in FSL and fMRIstat. This allows for
both group-level t-tests that test the significance of one con-
trast at a time and F tests that allow testing of multiple con-
trasts simultaneously. F tests are not possible in FSL or
fMRIstat, since more than one contrast is simultaneously
required.

To omit the first-level covariances at the second level,
SPM2 must assume that the intrasubject variances are the
same for every subject, σ 2

k (X∗T
k X∗

k )
−1 = σ 2

k′(X∗T
k′ X∗

k′)
−1 for

k 
= k′ . In this case, the summary statistics covariance Vg̃

takes the form of a block diagonal matrix with identical
blocks, Vg̃k = σ 2

k (X∗T
k X∗

k )
−1 + σ 2

g Vgk , where Vg̃k and Vgk are
the kth block of their respective matricies. SPM2 uses ReML
to estimate the common covariance in each block, Vg̃k, with-
out ever separately estimating within- and between-
subject variance. As with the first-level, this ReML estimation
only takes place on subset voxels, those with significant over-
all F statistics.

An important special case is when only one contrast is of
interest, βcont, as in the previous two sections. In that setting,
σ 2

g Vg̃ will be identity times<AU: multiplied by?> a scalar,
and the second-level estimate (13) reduces to the OLS esti-
mate.

Generalized Estimating Equations
Another summary statistics approach that has been studied
involves using generalized estimating equations (GEE) to
estimate the second level [23]. Similarly, to the second level
of SPM2, this method only requires the mean parameter esti-
mates from the first level, and all parameters or subsets of
parameters from the first level may be analyzed at the second
level. Previous GEE analysis used first-level results that were
estimated with SPM2 [23]. A benefit of the GEE approach is
that it does not assume the covariance of β̂g is heterogeneous
across space as SPM2 does but estimates covariance sepa-
rately for each voxel.

Just as with SPM2, the first-level covariance estimates are
not needed due to the assumption that intrasubject variance is
the same across all subjects, and so Vg̃ is a block diagonal
matrix with identical blocks. For our description, we assume
all first-level parameters continue to the second level, and so
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Xg is an Np × pg matrix. To estimate the second level, the
GEE method uses two variance estimates, the first being the
working correlation VW, which is an approximate estimate of
σ 2

g Vg̃ [24] and need not have the structure of the true correla-
tion. If we use VW to estimate βg, we have 

β̂g = (
XT

g V−1
W Xg

)−1
XT

g V−1
W β̂.

Although VW can be used to find an unbiased estimate of β̂g ,
an additional, more accurate estimate of Vg̃ is incorporated
into the estimate of the variance of the parameter estimates,
known as the sandwich estimator:

Ĉov
(
β̂g

) = (
X T

g V−1
W X g

)−1
X T

g V−1
W V̂g̃V

−1
W X g

(
X T

g V−1
W X g

)−1
.

The estimate, V̂g̃, has a block-diagonal structure given by

V̂g̃ = diag(V̂m, . . . , V̂m). (18)

The blocks on the diagonal are the p × p mixed-effects covari-
ance matrix estimates

V̂m =
N∑

k=1

(β̂k − Xgkβ̂g)(β̂k − Xgkβ̂g)
T/(N − 1),

where Xgk is the portion of Xg that corresponds to subject k (in
this case, rows p(k − 1) + 1 through pk of the design matrix
Xg). Since V̂m is not fitted to a covariance structure such as an
AR or ARMA model, this is referred to as an unstructured
covariance. The benefit of using both VW and V̂g̃ is that our
estimate of Cov(β̂g) is robust and tends, asymptotically, to the
true value of Cov(β̂g), even if the working correlation is mis-
specified. Also, the estimate of βg is unbiased, regardless of
the choice of the working correlation; therefore, VW does not
need to be very complicated, and even the identity matrix
could be used. The benefit of this method is that it does not
assume that the covariance is spatially homogeneous, and so
the variance of the parameter estimates is calculated separately
for each voxel, which reduces bias of the variance estimate.

Discussion
When making group-level inference on fMRI data, it is
important to use a mixed models approach so that both the
within-subject variation and the between-subject variation
are accounted for. The summary statistics approach is a
popular approach for group-level modeling of fMRI data.
All four of the methods presented here are summary statis-
tics methods, with one of the differences between the meth-
ods being how the variance of the group-level error εg̃ is
estimated.

FSL and fMRIstat take similar approaches to estimate Vg̃.
Both methods use the estimate of the covariance from the first
level to determine the within-subject variation, (XTV−1X)−1.
By allowing only contrasts of parameter estimates from the
first level into the second level, the second component of the
covariance is simplified from σ 2

g Vg to σ 2
g I. From this point, the

two methods differ in how they estimate σ 2
g , where FSL uses a

two-stage estimating approach including MCMC, and
fMRIstat uses the EM algorithm.

SPM2 and the GEE method differ from both FSL and
fMRIstat in that they do not use the first-level covariance esti-
mates at the second level due to the assumption that Vg̃ has
identical blocks along the diagonal. GEE estimates the covari-

ance of the group-level parameters by use of the sandwich
estimator, which leads to a consistent estimate of the variance
of β̂g, and SPM2 uses a spatially homogeneous covariance
estimate that is pooled over a subset of voxels.

With both SPM2 and GEE, there is no constraint on the
dimension of X g , multiple parameters can be estimated at
the group level, and, therefore, it is possible to carry out
multiple t-tests and F tests. F tests allow multiple contrasts
to be tested at once. For example, if your group-level model
had three parameters, βg = [βg1, βg2, βg3]T , an F test could
be used to simultaneously test if any of these parameters
were zero.

Conclusions
We have reviewed four commonly used approaches to group
modeling in fMRI. The methods differ in their computational
intensity (FSL with its two-level estimation including MCMC
being the most intense) and assumptions (SPM2 with its
assumption of spatially homogeneous covariance Vg being the
most restrictive).
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Callouts

Linear time invariant systems are the standard way to speci-
fy the model for the experimentally related signal in fMRI. 

Due to differential magnetic susceptibility of oxygenated
hemoglobin and deoxygenated hemoglobin, the BOLD
effect results in greater MRI intensity when brain activity
increases.

Due to the massive size of fMRI datasets, standard statisti-
cal software is not useful, and custom software is required.

When making group-level inference on fMRI data, it is
important to use a mixed models approach.
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Fig. 1. These distributions illustrate the difference between fixed- and mixed-effects
analysis, where blue and red distributions refer to males and females, respectively. The
top eight distributions are subject-specific distributions, followed by the group distribu-
tions stemming from fixed-effects and mixed-effects analysis. The vertical lines indi-
cate the sample means for the two groups.
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Fig. 2. The experimental stimuli and predictors associated with the BOLD response
from a singe voxel (volume-element) over time. The top color bar indicates when the
subject was cued to tap their fingers randomly (red), sequentially (green), only the
index (yellow), or not at all (blue). The associated experimental stimuli are shown as
well as the experimental predictors that are created by convolving the stimuli with
an HRF. Finally, the original BOLD response (black) is shown with the predicted model
fit (blue) based on the model formed with the experimental predictors.
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Fig. 3. Two-stage model in the case where a single contrast from each subject is taken from level 1 to level 2. (a) The model for
one subject of the finger tapping experiment, including the contrast that is applied to the parameter estimates to test if the
activation of sequential finger tapping is different from random finger tapping. (b) The second-level model incorporating the
first-level contrasts from 12 subjects, where the model produces group-level estimates pertaining to the first six subjects and the
last six subjects. The contrast at this level compares the two groups of subjects.
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STATISTICS TERMS
Efficiency
The efficiency of an estimator is the inverse of variance. If you have two estimators Ê1 and Ê2, where Ê1 is more efficient than

Ê2, this implies that Var (Ê1) < Var (Ê2).

Bayesian versus Classical Inference
Classical statistical inference is the basis for most widely known statistical procedures. Also known as frequentist inference,

the approach assumes that there is a fixed, unknown parameter that describes a feature of a population (say, the mean

BOLD response in a given brain region in a given experiment). The data, which is a random process over repetitions of the

experiment, is collected to learn about this parameter. Classical inference is couched in terms of unlimited repeated sam-

ples of the population (in our case, of fMRI subjects). For example, the interpretation of a confidence interval (an interval

about an estimate that expresses its uncertainty) requires reference to an infinite number of hypothetical replications of the

experiment: A level 95% confidence interval will contain the true (fixed) parameter 95% of the time with many repetitions of

the experiment.

Bayesian statistical inference regards the parameters as random instead of as fixed. Before any data is collected, the

parameters are assigned an a priori distribution, called the prior. After the experiment, the prior is updated into a posterior,

based on what has been learned about the parameter; the posterior is the distribution of the parameter conditional on the

observed data. Bayesian inference is based on the posterior distribution. For example, a Bayesian confidence interval is an

interval that has a given probability of containing the (random) parameter after having seen the data. There is no reference

to the frequency of an event over ad infinitum repetitions of the experiment.

While Bayesian methods offer intuitive probabilistic statements about unknown quantities of interest (the parameters),

they can be controversial. Different investigators may have different beliefs and so use different priors, and then get differ-

ent results based on the same data. To address this, many authors use so-called noninformative priors, which exert as little

influence on the posterior as possible. The two approaches, fortunately, can be reconciled. For most problems, with more

and more data, the prior becomes less and less important, and Bayesian and classical inferences will generally agree.

Maximum Likelihood and Restricted Maximum Likelihood
For the following illustration, we use the first-level model, Yk = Xkβk + εkYk = Xkβk + εkYk = Xkβk + εk, where ε ∼ N(0, σ 2

k Vk) and Yk has length Tk. One of the

difficulties in estimation is that there are multiple parameters to estimate, the components of β and the components of

σ 2
k Vk. The maximum likelihood (ML) and ReML are two methods that are used to estimate these parameters. The starting

point of both of these methods is the formation of a likelihood equation or the joint probability distribution function of the

random variables. In the ML case, Yk ∼ N(Xkβk, σ
�
k Vk)Yk ∼ N(Xkβk, σ
�
k Vk)Yk ∼ N(Xkβk, σ
�
k Vk) for k = 1, . . . , N are the random variables of interest, and the likelihood

is a function of βββk and σσσ 2
kVk, given by the product of the N normal distribution functions:

L
(
βk, σ

2
k Vk

) =
N∏

k=1

{
(2π)−Tk/2

∣∣σ 2
k Vk

∣∣−1/2
exp

(
−1

2
(Yk − Xkβk)

T (
σ 2

k Vk
)−1/2

(Yk − Xkβk)

)}
. (19)

Since this likelihood cannot be maximized for both βββk and σσσ 2
kVk simultaneously, first an estimate of σσσ 2

kVk is plugged into

(19)  and the likelihood is maximized to find β̂k, then this estimate of βk is substituted into (19), and it is maximized to esti-

mate σσσ 2
kVk. This process is repeated until the estimates converge to a solution. Usually a specific structure of Vk, for example

AR(1), is assumed to simplify the estimation process by reducing the number of variance parameters that need to be esti-

mated. One of the pitfalls of this method is that when estimating the variance, an estimate of βββk is used instead of the true

value. This causes the variance estimate to be biased in the case of maximum likelihood. For example, the ML one sample

variance estimate is 1
N

∑
i(Yi − Y )2 and is biased by a factor of N

N−1 .

ReML starts with a different random variable Rk = AkYk, where Ak = (I − Xk(XT
kXk)

−1XT
k), which has Rk ∼ N(0, Akσ

2
k VkAT

k), and

so the likelihood is only a function of σσσ 2
kVk. This likelihood is then maximized to get the estimate of σσσ 2

kVk, and since βββk was

not involved, the result is an unbiased estimate of the variance. For example, it can be shown that the ReML one sample

variance estimate is 1
N−1

∑∑∑
i(Yi − Y)2 and is unbiased. The ReML method only supplies an estimate for the variance parame-

ters that are substituted into (19), which is maximized to find the estimate for βββk. Further details on ReML and ML can be

found in [17].
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PREPARATIONS FOR MULTISUBJECT MODELING
There are various preprocessing steps that must be applied to fMRI data before group modeling can be performed. Of the

three steps, intrasubject registration, intersubject registration, and spatial smoothing, the second is the most crucial to group

modeling: without intersubject registration, different subjects’ brains will not line up and group modeling will be impossible.

Intrasubject Registration—Movement Correction
Despite experimenters’ and subjects’ efforts, subjects invariably move their heads in the magnet. If uncorrected, movement

can be a significant source of nuisance variability. Consider that we are interested in finding BOLD signal changes on the

order of 0.1–5%, yet if a subject moves his head a distance of one-half voxel, a voxel at the edge of the brain will experi-

ence a 50% change in intensity. Hence, successful estimation and correction of movement is necessary to find the subtle

effects of interest.

Motion correction methods are all generally rigid body, estimating three translation and three rotation parameters to

match a given image to the reference image, typically the first image collected. This is a classic image processing prob-

lem (see, e.g., [25]–[27]). The principal differences between methods are on the cost function to measure image similari-

ty (typically least squares or mutual information), the optimization method, and the interpolation method used (which

may differ between estimation and the final application of movement parameters).

Intersubject Registration 
Everyone, even identical twins, has a uniquely shaped brain. Before group modeling of fMRI data can be performed, all

subjects must be spatially transformed into a common space. Some times known as spatial normalization, this process finds

a transformation that best warps a subject into a common atlas brain space <AU: is there a word missing here? the sen-

tence is unclear> best corresponds to location T(x) in a subject’s brain. Finding the best parameterization of the transforma-

tion T is an active area of research (see, e.g., [28]–[31]). For the purposes of this work, we simply assume that the functional

data have been spatially transformed such that a given voxel in each subject corresponds to the same atlas location, as

best as is possible.

Spatial Smoothing 
Human anatomy is highly variable, and two brains cannot not necessarily be matched gyri-to-gyri even when the registration

is done manually. To overcome these limitations of intersubject registration, spatial smoothing is applied to blur out residual

anatomical differences. Commonly used are Gaussian kernels with full width at half maximum of 5–10 mm.


