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Multiscale 3-D Shape Representation and
Segmentation Using Spherical Wavelets

Delphine Nain, Steven Haker, Aaron Bobick, and Allen Tannenbaum*

Abstract—This paper presents a novel multiscale shape rep-
resentation and segmentation algorithm based on the spherical
wavelet transform. This work is motivated by the need to com-
pactly and accurately encode variations at multiple scales in the
shape representation in order to drive the segmentation and shape
analysis of deep brain structures, such as the caudate nucleus
or the hippocampus. Our proposed shape representation can be
optimized to compactly encode shape variations in a population at
the needed scale and spatial locations, enabling the construction of
more descriptive, nonglobal, nonuniform shape probability priors
to be included in the segmentation and shape analysis framework.
In particular, this representation addresses the shortcomings of
techniques that learn a global shape prior at a single scale of
analysis and cannot represent fine, local variations in a population
of shapes in the presence of a limited dataset.

Specifically, our technique defines a multiscale parametric
model of surfaces belonging to the same population using a
compact set of spherical wavelets targeted to that population. We
further refine the shape representation by separating into groups
wavelet coefficients that describe independent global and/or local
biological variations in the population, using spectral graph par-
titioning. We then learn a prior probability distribution induced
over each group to explicitly encode these variations at different
scales and spatial locations. Based on this representation, we
derive a parametric active surface evolution using the multiscale
prior coefficients as parameters for our optimization procedure
to naturally include the prior for segmentation. Additionally, the
optimization method can be applied in a coarse-to-fine manner.
We apply our algorithm to two different brain structures, the
caudate nucleus and the hippocampus, of interest in the study
of schizophrenia. We show: 1) a reconstruction task of a test set
to validate the expressiveness of our multiscale prior and 2) a
segmentation task. In the reconstruction task, our results show
that for a given training set size, our algorithm significantly
improves the approximation of shapes in a testing set over the
Point Distribution Model, which tends to oversmooth data. In the
segmentation task, our validation shows our algorithm is com-
putationally efficient and outperforms the Active Shape Model
algorithm, by capturing finer shape details.
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1. INTRODUCTION

HE characterization of local variations specific to a shape
Tpopulation is an important problem in medical imaging
since a given disease often only affects a portion of the surface
of an organ. In particular, one of the driving biological projects
that motivates our work is the study of schizophrenia, a mul-
tifaceted illness affecting 1% of the U.S. population and con-
suming a significant portion of the health-care budget (estimates
of yearly costs are 60 billion dollars) [1]. Yet the image-based
clinical study of schizophrenia is only now beginning to take
concrete form, primarily because neuroimaging techniques are
finally providing a sufficiently detailed picture of the structure
of the living brain and tracking the way the brain functions in
controlled experimental settings. One important aspect of such
an analysis of schizophrenia is the segmentation and shape anal-
ysis of selected brain structures, such as the hippocampus or the
caudate nucleus, in order to find differences between groups of
healthy and diseased patients.

Currently, such segmentations are typically carried out by
hand. An automatic tool would be a great advance if it were
to reliably and reproducibly segment cortical structures for
multiple patients, across multiple time points. After the shapes
are segmented the geometrical differences between brain struc-
tures of patients with schizophrenia and patients without can be
studied. Many shape features have been proposed, some global,
such as volume [2] or the shape index [3], some local such as
point-to-point differences [4], and some at intermediate scales,
such as the medial representation [5].

Fig. 1 shows a rendering of left caudate nucleus along with an
MRI slice in the coronal and sagittal view, as well as three typ-
ical surfaces from our dataset. The caudate nucleus is located in
the basil ganglia, a group of nuclei in the brain associated with
motor and learning functions [6]. Fig. 2 shows the same infor-
mation for the left hippocampus. The hippocampus is a part of
the brain located inside the temporal lobe. It forms a part of the
limbic system and plays a part in memory and navigation [7].
As can be seen in Figs. 1 and 2, those structures contain sharp
features that could be important in shape analysis [8]. An auto-
mated segmentation of such structures must therefore be highly
accurate and include relevant high frequency variations in the
surface. Since shape representation is a key component of the
segmentation, it must be descriptive enough to express shape
variations at various frequency levels, from low harmonics to
sharp edges. Additionally, a shape representation that encodes
variations at multiple scales can be useful in itself as a rich fea-
ture set for shape analysis and classification.
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Fig. 1. (a), (b) Coronal and Sagittal view of left caudate nucleus. (c)—(e) Ex-
ample of three shapes from left caudate nucleus dataset.

(© (e)

Fig. 2. (a), (b) Coronal and Sagittal view of left hippocampus. (c)—(e) Example
of three shapes from left hippocampus dataset.

As will be reviewed in Section II, medical object segmen-
tation with deformable models and statistical shape modeling
are often combined to obtain a more robust and accurate seg-
mentation [9]-[13]. In that framework, a joint prior probability
over shape parameters is learned using a training set in order to
constrain the parameter values during the segmentation process.
However, the degrees of freedom that can be expressed with the
shape parameters and the number of training samples greatly
influence how accurately the the prior probability can be esti-
mated.

To address this issue, a decomposable shape representation
targeted to the population seems natural, where the shape pa-
rameters are separated into groups that describe independent
global and/or local biological variations in the population, and
a prior induced over each group explicitly encodes these vari-
ations. Wavelet basis functions are useful for such a represen-
tation since they range from functions with global support to
functions localized both in frequency and space, so that their

coefficients can be used both as global and local shape descrip-
tors, unlike Fourier basis functions or principal components over
landmarks which are global shape descriptors. The use of spher-
ical wavelet basis in medical imaging has been investigated for
segmentation in 2-D imagery [14] but not yet for surfaces in 3-D
imagery. This work addresses this gap and presents three novel
contributions for shape representation, multiscale prior proba-
bility estimation, and segmentation. Finally, we should note that
preliminary versions of the approach described in the present
paper have appeared in the conference proceedings in [15] and
[16].

The remaining sections of this paper may be summarized as
follows. We first review related work in Section II. We then de-
scribe our shape representation based on the spherical wavelet
transform in Section III. In Section IV, we detail the construc-
tion of a scale-space prior over the wavelet coefficients for a
population of shapes and evaluate this prior in a reconstruction
task. In Section V, we derive a parametric active contour seg-
mentation flow based on the spherical wavelet representation
and scale-space prior and evaluate this algorithm in a segmen-
tation task. We conclude in Section VI with a discussion and
future work.

II. PREVIOUS WORK

A. Shape Representation

In this paper, we focus on 3-D brain structures that have
boundaries that are simply connected surfaces (topological
spheres). To conduct segmentation or shape analysis on such
structures, it is useful to have a mathematical description of the
boundary of the given structure. Two main approaches exist:
to represent the boundary explicitly in a parametric form or
implicitly as the level set of a scalar function. For the para-
metric form, the simplest representation is a set of N discrete
3-D points connected by a triangular mesh (piecewise linear
surface). The full surface can be compactly encoded using 3N
point coordinates and a connectivity list [17].

Other parametric representations use linear combinations of
basis functions defined at the vertices of the mesh. In the work
of Staib et al. [18], a Fourier parameterization decomposes the
surface into a weighted sum of sinusoidal basis functions. One
complexity of the technique is the choice of surface parame-
terization. More recent work has avoided the parameterization
problem by first mapping the surface to the sphere and decom-
posing the shape signal using basis functions defined directly
on the sphere. In the work of Brechbuhler ef al. [19], a con-
tinuous, one-to-one mapping from the surface of an original
object to the sphere is defined using an area-preserving map-
ping that minimizes distortions. The object surface can then
be expanded into a complete set of spherical harmonics basis
functions (SPHARM). Similar to the Fourier surface approach,
the advantage of this representation is that the coefficients of
the spherical harmonic functions of different degrees provide
a measure of the spatial frequency constituents that comprise
the structure. Partial sums of the series can be used to com-
pactly represent selected frequencies of the object. As higher
frequency components are included, more detailed features of
the object appear. However, due to the global support of the
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spherical harmonic functions, the coefficients cannot be used
to identify where on the surface the frequency content appears.
Spherical wavelet functions address this shortcoming since they
have local support at various scales. In [20] and [21], the authors
showed that a spherical wavelet basis can capture shape changes
with fewer coefficients than a spherical harmonic basis and can
be used successfully for cortical surface shape analysis. In [22],
spherical wavelets are used to analyze a manifold not topolog-
ically equivalent to a sphere by doing a nonbijective mapping
between the manifold and the sphere via the normals. In [23],
the authors also use a multiresolution approach to shape char-
acterization but do not use spherical wavelets.

With the implicit representation, surfaces are the zero level
set of a scalar function in R®. The scalar function used is often
a signed distance map. Implicit representations are less com-
pact than the parametric representation but can represent any
topology. This can be an advantage during the segmentation
process since the implicit shape representation can naturally
handle topological changes. However, in this paper we will be
focusing on structures with the same topology and will there-
fore be using a parametric representation that is more compact
and therefore more efficient during a surface evolution. We will
discuss in Section VI the extension of our multiscale shape prior
and segmentation algorithm to implicit shape representations.

B. Segmentation With Active Contours

By representing the shape of the segmented structure bound-
aries with a model and deforming the model to fit the data,
deformable models offer robustness to both image noise and
boundary gaps [9] and have been extensively studied and widely
used in medical image segmentation, with good results. There
are two types of deformable models, based on which represen-
tation is used for the model: parametric deformable models and
geometric deformable models.

The classical parametric model is based on the snake formu-
lation. See [9] and [24] for a detailed survey of snakes, their ex-
tensions, and their use in medical image analysis. Geometric de-
formable models [25]-[28] evolve a curve or surface using only
geometric measures. Since the evolution is independent of the
parameterization, the evolving curves and surfaces can be rep-
resented implicitly as a level set of a scalar function [29], [30].
As a result, topology changes can be handled automatically at
the expense of a higher computational cost since the implicit
shape representation is of higher dimension than the parametric
representation. In this paper, since we will be segmenting brain
structures of a fixed topology, our initial and final contour will
remain of the same topology and we will therefore use the para-
metric model given its computational efficiency. One point of
departure with the snakes model is that we will be deriving an
evolution equation using the shape parameters directly as op-
posed to landmarks on the shape, in similar spirit to Tsai et al.
[12].

Initial formulations of active contours, called “edge-based
active contours,” combined smoothness constraints with image
data forces sampled on the boundary of the model. One issue
with edge-based active contours is that they are not robust to
noise in the image and the gradient terms can stop the curve
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evolution at spurious edges. Recently, there has been a consider-
able amount of work on image segmentation using region-based
curve evolution techniques. In those techniques, the force that
influences the evolution of the curve depend on region statistics,
inspired by the region competition work of Zhu and Yuille [31]
and more recently the work of Chan and Vese [32] and Yezzi
[33]. Our work uses the region-based active contour formula-
tion in a parametric framework.

C. Shape Priors

Shape priors are commonly used to constrain shapes obtained
during the segmentation and registration of biomedical images.
Some of the first shape priors were based on local smoothness
constraints [34] via elastic forces or combinations of global and
local constraints [35] within the active contour framework. One
limitation of these models is possible convergence to suboptimal
shapes due to high flexibility in deformations. Statistical shape
models were devised to overcome such drawbacks by learning
a shape model from a training set.

In the Point Distribution Model (PDM) of Cootes and Taylor
[17], a probability prior is learned from a training set of shapes
by estimating a joint probability distribution over a set of land-
marks on the shapes using principal component analysis (PCA).
The joint probability distribution is assumed to be a multivariate
Gaussian distribution. A covariance matrix is built from the data,
and a diagonalization of the covariance matrix provides eigen-
vectors that are the principal axes of the distribution (also called
principal modes) and the eigenvalues provide a bound on the
subspace occupied by the shapes seen in the training set. This
prior is then used in a parametric active contour segmentation
algorithm called Active Shape Models (ASM) by projecting the
evolving shape onto the space of eigenvectors and limiting the
evolving shape to lie within a certain number of standard devi-
ations of the eigenvalues seen in the training set. Shape priors
in geometric active contours were introduced by Leventon et al.
[11], where the landmarks are the pixels of the distance map im-
plicitly representing the shape.

In ASM, the advantage of using the covariance matrix from
landmarks in a training set is to restrict the segmentation
task to a subspace of allowable shapes. However, it has two
major limitations. First, it often restricts deformable shape too
much, particularly if it has been trained on a relatively small
number of samples since the number of principal components
extracted from diagonalizing the covariance matrix is bound
by the number of training shapes. Indeed, since the rank of the
covariance matrix is at most K — 1, if there are K training
shapes used to create the covariance matrix, then at most K — 1
eigenvectors (or principal modes) exist. Second, eigenvectors
of the covariance matrix encode the most global modes of
variation in the shapes, hence finer, more local variations of
shapes are often not encoded given a limited training set.

To address this issue, the authors in Davatzikos et al. [14]
have proposed a hierarchical active shape model framework for
contours in 2-D medical imagery using standard 1-D wavelets,
with convincing results. They use the wavelet transform [36] to
produce a scale space decomposition of the signal. The authors
apply a wavelet transform to the parametric functions (z,y, 2)
representing a deformable contour. The authors approximate the
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full covariance matrix of the wavelet coefficients as a a ma-
trix that is block diagonal, when rearranging the coefficients in
the right order. Coefficients that belong to the same band make
up a diagonal block of the covariance matrix. Coefficients are
grouped into bands using a logarithm tree to divide the space-
frequency domain. This groups coefficients of the same scale
and nearby spatial location in the same band, following the
assumption that only coefficients close in space and scale are
closely correlated. Each diagonal block can then be statistically
modeled independently of the rest of the matrix and eigenvec-
tors are extracted for each diagonal block, bringing the total
number of eigenvectors to (approximately) B(K — 1) if there
are B blocks and K training shapes. The eigenvectors corre-
sponding to bands at coarse scales reflects global shape char-
acteristics, whereas the eigenvectors corresponding to bands at
finer scales reflect local shape characteristics at a particular seg-
ment of the curve. Using this technique, the authors show that
a segmentation using the wavelet shape prior is more accurate
than a segmentation with traditional active shape models.

D. Our Contributions

We propose to extend the framework by Davatzikos et al. to
3-D imagery in three novel ways. First, we describe a multi-
scale representation of surfaces in 3-D medical imagery using
conformal mappings and a compact set of spherical wavelets
targeted to the population we are analyzing. Second, we present
a novel algorithm to discover optimal independent multiscale
shape variations (bands) from the data by doing a spectral parti-
tioning of coefficients based on correlation, instead of arbitrarily
grouping coefficients close in space and scale together. Lastly,
we derive an active contour segmentation algorithm in the space
of the spherical wavelet basis functions in order to directly and
naturally include the multiscale prior into the surface evolution
framework.

In [15], we presented an application of spherical wavelets to
the statistical analysis of a population of 3-D surfaces in med-
ical imaging, by applying PCA analysis to a scale-space de-
composition of the spherical wavelet coefficients representing
the shapes. Our results showed that this type of multiscale prior
outperformed PDM in a reconstruction task. In this paper, we
present this technique and further compare it to another wavelet-
based prior. We then present a novel segmentation framework
using this 3-D wavelet representation and multiscale prior.

III. SHAPE REPRESENTATION

A. Data Description

Throughout this work, we employ two key brain structures
to illustrate our techniques and our results. We use a dataset
of 29 left caudate nucleus structures and a dataset of 25 left
hippocampus structures, from a 1.5 Tesla GE Echospeed MR
system, coronal SPGR images, 124 slices of 1.5 mm thickness,
voxel dimensions 0.9375 x 0.9375 x 1.5 mm. The MRI scans
were hand-segmented by an expert neuroanatomist to provide
ground truth segmentations for each structure. Each manual seg-
mentation defined a 3D surface for each structure extracted by
a standard isosurface algorithm.

Fig. 3. Visualization of recursive partitioning of icosahedron mesh and basis
functions built on finest resolution mesh. (a) Initial icosahedron (scale 0). (b)
Two recursive partitionings of icosahedron (scale 2). (c) Four recursive parti-
tionings of icosahedron (scale 4). (d) Visualization of scaling function of scale
level j = 0. (e) Visualization of wavelet basis function of scale level j = 0. (f)
Visualization of wavelet function of scale level j = 2. For (d)—(f), color corre-
sponds to value of function on the sphere.

B. Spherical Wavelets

A spherical wavelet basis is composed of functions defined
on the sphere that are localized in space and characteristic scales
and therefore match a wide range of signal characteristics, from
high frequency edges to slowly varying harmonics [36]. The
basis is constructed of scaling functions defined at the coarsest
scale and wavelet functions defined at subsequent finer scales.
A scaling function is a function on the standard unit sphere (S)
denoted by ¢, : S — R where j is the scale of the function
and k is a spatial index that indicates where on the surface the
function is centered. A usual shape for the scaling function is a
hat function defined to be one at its center and to decay linearly
to zero. Fig. 3(d) shows a scaling function for scale j = 0. The
color on the sphere indicates the value of the function g j at
every point on the sphere. As the scale j increases, the support
of the scaling function decreases. A wavelet function is denoted
by 1;r : S — R. At a particular scale j, wavelet functions
are combinations of scale j and (5 + 1) scaling functions. Fig.
3(e)—(f) shows wavelet functions for different values of j and
k. Note that the support of the functions becomes smaller as the
scale increases. Together, the coarsest level scaling function and
all wavelet scaling functions construct a basis for the function
space L>

L? = {go, klk € No} | J{¢.mlj > 0,m € Njza}. (D)

A given function f : S — R can be expressed in the basis as
a linear combination of basis functions and coefficients

f(x) = Z Ao,k0,k(X) + Z Z YimWPim(X).  (2)

0<j m

Scaling coefficients Ao j represent the low pass content of
the signal f, localized where the associated scaling function has
support; whereas, wavelet coefficients ; ,,, represent localized
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band pass content of the signal, where the band pass frequency
depends on the scale of the associated wavelet function and the
localization depends on the support of the function.

In this paper, we use the discrete biorthogonal spher-
ical wavelets functions defined on a 3-D mesh proposed by
Schroder and Sweldens [37], [38]. These are second-generation
wavelets adapted to manifolds with nonregular grids. The main
difference with the classical wavelet is that the filter coefficients
of second generation wavelets are not the same throughout,
but can change locally to reflect the changing (non translation
invariant) nature of the surface and its measure. This means
that wavelet functions defined on a mesh are not scaled and
shifted versions of the function on a coarser grid, although they
are similar in shape, in order to account for the varying shape
of mesh triangles. The second-generation spherical wavelets
that we use are defined on surfaces which are topologically
equivalent to the unit sphere (S) and equipped with a multires-
olution mesh. A multiresolution mesh is created by recursively
subdividing an initial polyhedral mesh so that each triangle is
split into four “child” triangles at each new subdivision (scale)
level. This is done by adding a new midpoint at each edge
and connecting midpoints together. This process is shown in
Fig. 3(a)—(c). The starting shape is an icosahedron with 12
vertices and 20 faces, and at the fourth subdivision level, it con-
tains 5120 faces and 2562 vertices. Any shape (not necessarily
a sphere) that is equipped with such a multiresolution mesh
can be used to create a spherical wavelet basis and perform the
spherical transform of a signal defined on that mesh.

1) Discrete Spherical Wavelet Transform: The algorithm for
the fast discrete spherical wavelet transform (FSWT) is given
in [38]. Here, we sketch the transform algorithm in matrix form
which gives a more compact and intuitive notation for the rest of
this paper. In practice, we use the FSWT in our implementation.

If there exist IV vertices on the mesh, a total of N basis func-
tions are created, composed of Ny scaling functions (where N
is the initial number of vertices before the base mesh is sub-
divided, with Ng = 12 for the icosahedron) and NV,. wavelet
functions for » = 1,... R where N,. is the number of new ver-
tices added at subdivision r (N7 = 30, Ny = 120, N3 = 480,
N4 = 1920 for the first four subdivisions of the icosahedron).
In this paper, we will refer to all basis functions as wavelet basis
functions as a shorthand.

In matrix form, the set of basis functions can be stacked as
columns of a matrix ® of size NV x N where each column is
a basis function evaluated at each of the N vertices. The basis
function is evaluated at each of the IV vertices. The basis func-
tions are arranged by increasing scale (subscript j) and within
each scale level by increasing spatial index (subscript k). Since
the spherical wavelet functions are biorthogonal, ®T® # Id
(the identity matrix), so the inverse basis ® ! is used for per-
fect reconstruction, since ®1® = Id.

Any finite energy scalar function evaluated at [V vertices, de-
noted by the vector F' of size N X 1, can be transformed into a
vector of basis coefficients ' of size IV x 1 using the Forward
Wavelet Transform:

Fp=0"'F 3)
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and recovered using the Inverse Wavelet Transform:

F=9oI'p. “)

The vector of coefficient I" is composed of coefficients asso-
ciated with each basis function in ®. It contains scaling coeffi-
cients as its first Ny entries, then wavelet coefficients associated
with wavelet functions of scale zero for the next /V; entries, and
so forth, all the way to wavelet coefficients of scale R — 1 for
the last Ny entries. Therefore, in total, the vector contains N
entries. Next, we describe how to represent shapes using spher-
ical wavelets.

C. Shape Representation With Spherical Wavelets

In this section, we explain how to equip a set of anatomical
shapes with the correct multiresolution mesh structure in order
to build wavelet functions directly on a mean shape that is rep-
resentative of the population. We then explain how to encode a
shape signal into wavelet coefficients.

1) Shape Remeshing and Registration: Before we can per-
form our wavelet analysis, we need to retriangulate and register
all the surfaces in the dataset, so that they have the same mu-
tiresolution mesh and mesh nodes at corresponding anatomical
locations. Our approach to surface registration is based on the
theory of conformal (angle-preserving) mappings [39], [40] of
surfaces with spherical topology. Regardless of the degree of
surface variation, such as variations in convexity to concavity,
the method efficiently unfolds each surface, yielding an ana-
Iytic one-to-one (conformal) mapping of each surface onto the
sphere, and between each pair of surfaces by composition of
mappings. Although we have had success with our conformal
mapping approach, we note that the wavelet analysis presented
here does not require this particular method of spherical map-
ping. Indeed, other techniques such as inflation [41], harmonic
mapping with rectangular grids [19], circle packing [42], least
squares mapping [43], and conformal mapping with parabolic
equations [44] could also be used. The steps of our registration
and remeshing technique ar as follows.

Step 1: Conformal Mapping: Let ¥ be a surface of spher-
ical topology we wish to register and remesh. As noted above,
our registration method is based on complex variables and the
conformal mapping of Riemann surfaces. The core of the algo-
rithm requires the solution of a pair of sparse linear systems of
equations and uses finite element techniques to solve an elliptic
partial differential equation of the form

g
Af = %6]) (5)

where A denotes the Laplace-Beltrami operator on %, p is an
arbitrary point on Y, f is the desired conformal mapping to the
sphere S, ¢, is the Dirac delta function at p, and w denotes a
complex conformal coordinate around p. See [39] for details.
The resulting mapping f to the sphere can be made unique by
specifying three points on X to be mapped respectively to the
north pole, south pole, and an equatorial point on the sphere.
In Appendix A, we describe our technique for automatically
choosing these three points. Choosing these points consistently
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Fig. 4. Illustration of remeshing step for two left hippocampus shapes. See Section III-C-1 for details.

helps insure that corresponding surface locations are well reg-
istered within the caudate and hippocampus datasets. This is an
approach that works well in practice with the caudate nucleus
and the hippocampus. We hypothesize that this approach would
work with other shapes that have a major axis, so other auto-
matic point selection would have to be devised for more com-
plex shapes.

This first step is illustrated in the first two columns of Fig. 4,
where each row of the first column represents a different ini-
tial left hippocampus surface Y. with three automatically chosen
control points. The color represents the z coordinate of X for
reference. The second column shows the result of mapping each
point on X to the sphere using the conformal mapping f. The
sphere S then has the same triangulation as 3. The color shown
at the vertices of S is still the z coordinate of the corresponding
vertex on X..

Step 2: Area Correction: As pointed out in the early spher-
ical mapping work of [19], conformal mappings may result in
extreme distortion of area which needs to be corrected for cer-
tain applications. In particular, when remeshing a surface using
a standard multiresolution mesh, large distortions in area can
result in a nonuniform distribution of mesh nodes on the orig-
inal surface and a loss of fine detail. To prevent this, we have
implemented a simple method to adjust the conformal mapping
to have better area-preservation properties. This technique en-
sures that the cumulative area of the vertices on the sphere be-
tween the south pole and any latitudes, normalized by the overall
sphere surface area, is equal to the cumulative area of the same
triangles on the shape, normalized by the overall shape surface
area. This ensures that the triangle areas for the sphere and the
shape are spread out proportionally from south to north pole.

To achieve this, we translate the points on the sphere along their
longitudes. The mathematical details of the technique are as fol-
lows. Let g, = ((1 — 22)Y2 cos(6,,), (1 — 22)*/?sin(6,,), z,)
forn = 1,2,..., N represent the mesh points on the sphere,
indexed so that z; = —1 < 2z, < ... < zy = 1. Then, 2;
is the south pole (0, 0, —1) and zy is the north pole (0, 0, 1).
For each z,,, the area of the region of the sphere south of the
latitude through z,, is given analytically by 27 (z, + 1). This
region corresponds to a region on the original surface X of area
A,,, which can be calculated using the triangulation of 3. In par-
ticular, A; = 0 and Ay = A, where A is the total area of 2. If
An/A = 2m(2,+1)/4x for all n, then these areas on % and the
sphere are spread out proportionally from south to north pole.
This is unlikely to be the case in practice, so we adjust each
point p,, to get a new point p,, by setting z,, = (24,,/A) — 1
and setting p,, = ((1—22)"2cos(f,,), (1—22)"/?sin(b,), zn).
This effectively spreads out the areas on the sphere in proportion
to their original surface areas. The advantage of this approach
is that the algorithm involved does not require iteration, as a
functional minimization or flow technique would, and guaran-
tees that the adjusted spherical mapping remains bijective. In
the third column of Fig. 4, each row shows an adjusted spher-
ical mapping. The color coding is again the z coordinate of the
original surface shown in the first column. Comparison of the
second and third columns to the first clearly shows that the third
has a better distribution of area than the second. We note that
although this method has produced satisfactory results for the
surfaces we analyze here, more irregular surfaces may require
additional area adjustments.

Step 3: Remeshing: We retriangulate S with the vertices of a
subdivided icosahedron shown in Fig. 3(c). This yields a sphere
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(d) (e) ®

Fig. 5. After remeshing, shapes are aligned with Procrustes alignment and
mean shape is computed. (a) Left hippocampus surfaces before alignment. (b)
Left hippocampus surfaces after alignment. (c) Left hippocampus mean shape
computed from aligned shapes. (d) Left caudate surfaces before alignment
(b) and left caudate surfaces after alignment (c). Left caudate mean shape
computed from aligned shapes.

with a new triangulation denoted by S%. If we apply the inverse
mapping to the vertices of $%, f~1(Sf) = X, we then ob-
tain a retriangulated version of the original surface .. After this
transformation, the retriangulated shape .7 has two nice prop-
erties: 1) it has the required mesh for spherical wavelet anal-
ysis and 2) it has a one-to-one mapping with a canonical spher-
ical mesh, therefore providing one-to-one correspondence with
other shapes that have this property. Note that this remeshing
step maintains the initial correspondences. Before remeshing,
all shapes have been mapped to the sphere and their spher-
ical map is aligned on the sphere with the pole selection. The
remeshing is done with the same mesh for all shapes, therefore
the spherical map is still aligned after the remeshing step.

Step 4: Registration: After remeshing, all shapes have the
same mesh with IV vertices. A Procrustes transformation [45]
can be applied to all shapes to register them in Euclidean space.
This result of the Procrustes alignment is shown in Fig. 5(a)—(c)
for the left hippocampus dataset and in Fig. 5(d)—(f) for the left
caudate dataset. After Procrustes alignment, we denote shape ¢
by a vector ©F of size 3V x 1 (the first N entries are the x coor-
dinates of the vertices, the next N entries are the y coordinates,
and the last V entries are the z coordinates). After all K shapes
are registered, the Mean shape ¥ is found with the following
equation:

2_:i22§’. (6)

i=1

The mean shape for the left hippocampus dataset is shown in
Fig. 5(c) and for the left caudate dataset in Fig. 5(f).

2) Spherical Wavelets on Mean Shape: After the spherical
mapping and registration, all shapes in the population are
equipped with the same multiresolution mesh, where each
vertex of the mesh corresponds to the same anatomical location
across shapes. Since the spherical wavelet functions used in this
work can be defined on any surface of spherical topology with a
multiresolution mesh, we can build the basis functions directly
on the mesh of a mean shape for a population. This creates a set
of basis functions adapted to the geometry of the mean shape,
and therefore more specific to each shape in the population
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Fig. 6. Visualization of basis functions constructed on mean shape at various
levels. (a) Scaling function at scale 0. (b) Wavelet function at scale 0. (c) Wavelet
function at scale 2. For all subfigures, the color corresponds to the value of the
functions.

than if we had used bases functions built on a sphere. For each
shape, we denote the matrix of basis functions built on the
mean shape mesh as ®,,,. A scaling function for scale 0 and a
wavelet function for scales 2 and 4 are shown in Fig. 6(a)—(c)
on the mean shape of the left hippocampus population.

3) Encoding Shape Signal With Spherical Wavelets: We rep-
resent each shape in the population by encoding the deviation
from the mean using the spherical wavelet transform. We first
encode the variation from the mean for the ith shape with the
signal v; of size 3N X 1

v; =% - %P, @)

We then transform v; into a matrix of spherical wavelet basis
coefficients I',, with the forward spherical wavelet transform

0
S VO % (@)
(I)_l

where ®,,, is the wavelet basis functions evaluated on the mean
shape for that population. Therefore, a shape is transformed into
wavelet coefficients by taking the forward wavelet transform of
the z, y, and z variation from the mean signal. The resulting
vector of coefficients I',, contains as the first N entries the
wavelet encoding of the = coordinates of the shape, ranked from
coarse scale to finer scales, and similarly for the next N entries
that encode the y coordinates, and the last NV entries that encode
the z coordinate.

4) Filtering Shape Signal by Projection Onto a Reduced Set
of Basis Functions: The representation presented so far allows
us to represent the shape at various scale levels, by a filtering
operation that projects the shape onto a limited set of basis func-
tions. This can be done by creating a filter matrix P of size
M x N, where M is the number of basis functions to keep.
Each row of the matrix P keeps a particular basis function of
index j by having entries of value zero, except for the jth entry
that is set to one. The filtering (for all coefficients) is then per-
formed with the following equation:

0
0|, C))
P
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Fig. 7. Example of filtering operation for shape 1 of left caudate dataset and
left hippocampus dataset. (a) Mean shape. (b), (¢) Mean shape + low frequency
variations (scales 0-2). (c), (f) Mean shape + low and medium frequencies vari-

ations (scales 0-3). (d), (h) Mean shape 4 all frequencies variations (scales
0-4).

The resulting filtered coefficients I';. are of size 3M x 1. To
display the filtered shape, Iy is first premultiplied by the trans-
pose of P to be of size 3V x 1 (the coefficients that correspond
to the eliminated basis functions are zero), the inverse wavelet
transform is applied and the mean shape is added

P =%P 4+ up'T; . (10)

One example of this projection process is shown in
Fig. 7(a)—(d) for the left caudate shape 1 and (e)-(h) for
the left hippocampus shape 1. Fig. 7(a) shows the mean shape
for the left caudate population. Fig. 7(b)—(d) shows the mean
caudate shape plus filtered variations from the mean for shape
1. If only coarse scale basis functions are used Fig. 7(b), the
resulting shape is coarse with low frequency variations from the
mean shape. If basis functions of finer (higher) scale are added
to the projection set, the resulting shape contains additional
high frequency variations [Figs. 7(c), (d)]. The same informa-
tion is shown for the hippocampus in Fig. 7(e)—(h). This type
of filtering (or truncation) operation where a whole scale level
is suppressed is commonly used with Fourier functions, such
as spherical harmonics. However, one advantage of spherical
wavelets is that due to the local support of its basis functions,
a more granular truncation can be done, where only certain
basis functions at a scale level are suppressed, instead of all
the functions for that level. This allows for a more compact
truncation, keeping only those functions that represent im-
portant information in the signal, at all scale levels. The next
section explains how we do this in a principled way for a whole
population of shapes.

IV. MULTISCALE SHAPE PRIOR

To build a prior that captures both global and local varia-
tions in the population, we first reduce the dimensionality of the
I'; coefficients and keep only the coefficients that encode rel-
evant variations in the training data. This process is described
in Section IV-A. After truncation, we present a novel algorithm

to learn the probability distribution of the nontruncated coeffi-
cients. This process is described in Section IV-B.

A. Coefficient Truncation via Power Analysis

Given the total power ||p||* of the shape signal for a popu-
lation, we would like to remove the basis functions that do not
contribute significantly to that power. We define the population
shape signal p (size N x 1) by

p(n) ==

K 2
<Z vf(n)? + v (n)? + vf(n)2) (11)

=1

where v¥ (n) selects the variation from the mean of vertex n of
shape ¢ along the z axis, and v (n) and v (n) along the y and
z axis, respectively.

Since the wavelet basis functions are not orthonormal, we
cannot directly apply Parseval’s theorem for spectrum analysis.
Indeed

(p,p) # (rparp> (12)

where ', = ®,.1p are the coefficients of the spherical wavelet
transform of p.

In order to still perform a power analysis, we wish to see the
contribution of each wavelet basis function to the total power
for the population ||p||?. We know that for a signal p sampled at
N vertices of the mean shape

(p.p) = p" @, ®,'p (13)
since ®,,®,,! = Id. Then
(p,p) = p"®,,T,. (14)

The contribution of the kth wavelet basis function to the sum in
(14) is therefore

c(k) = p" o (2, k)T (k) (15)
where ®,,(:, k) is the kth column of the basis matrix ®,,, and
[, (k) is the kth element of the coefficients vector I'),.

Since we wish to remove basis functions that have no effect on
||lp||?, we remove those whose contribution ¢(k) is close to zero.
Noting that ¢(k) can be both positive and negative, we rank the
contribution of each basis by their absolute value from highest to
lowest and truncate the lowest basis functions whose cumulative
contribution is lower than 0.01% of the total power. Based on
this analysis, we build a filter matrix P* that indicates which
basis functions to keep to represent that population of shapes.

This truncation step leads to a nice compression property
since the reduced set of basis functions match variations specific
to a shape population, without introducing large error between
the filtered shape and the nonfiltered shape. Table I shows the
number of truncated basis functions and the average mean and
maximum error between original shapes and their filtered ver-
sion, using a filter matrix P* specific to the shape population, for
both the hippocampus and caudate dataset. The error is shown
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TABLE I

Dataset  \ Num Training N=5 | N=10 | N=15 [ N=20

Caudate
# initial fn. 2562 | 2562 | 2562 | 2562
# truncated fn. 1125 | 958 1050 | 1383
(% truncation) “44) | 3D (41) (54)
Avg. Max. Error (mm) 083 [ 0.77 0.67 0.60
Avg. Mean Error (mm) 0.15 0.17 0.16 0.15

Hipp.
# initial fn. 2562 | 2562 | 2562 | 2562
# truncated fn. 888 820 780 888
(% truncation) 35) | (32) (30) (35)
Avg. Max. Error (mm) 0.73 | 0.71 0.77 0.75
Avg. Mean Error (mm) || 0.16 | 0.14 0.13 0.14

7

(a)

© )

Fig. 8. Result of filtering operation to create a reduced basis set. (a) Original
caudate, shape 1. (b) Filtered caudate shape (54% truncation) with mean squared
error from original shape as colormap. (c) Original hippocampus, shape 1. (d)
Filtered hippocampus shape (35% truncation) with mean squared error from
original shape as colormap.

in millimeters. We show the amount of truncation and error for
varying population size from 5 to 20. For the caudate dataset, be-
tween 958 and 1383 basis functions out of 2562 are truncated,
depending on the number of shapes used to find P*. This rep-
resents a compression level between 45% and 54%. With the
truncation, the filtered shapes differ on average less than 0.2
mm from their unfiltered version. Fig. 8(a) shows the original
caudate shape 1 and Fig. 8(b) shows the filtered shape (based
on a 54% truncation level). The colormap shows the distance
between the filtered and nonfiltered shapes. As can be seen in
the figure, the truncation filtering does not seem to effect the
shape significantly and all high scale variations are still present.
For the hippocampus dataset, between 780 and 888 basis func-
tions are truncated, representing a compression level between
30% and 35%. Again, filtered shapes differ less than 0.2 mm on
average from their unfiltered version. Fig. 8(c) shows the orig-
inal hippocampus shape 1 and Fig. 8(d) shows the filtered shape
(based on a 35% truncation level). Again, the truncation filtering
does not affect the shape significantly and all the finer scales
variation are still present.

Fig. 9 summarizes the steps from Sections III-IV-A to trans-
form a shape into its reduced wavelet representation. Next, we
detail the steps to learn the multivariate probability distribution
of the reduced wavelet coefficients for a shape population.
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Fig. 9. Shape representation from Sections III-1V-B.

B. Multiscale Spherical Wavelet Prior

After finding a reduced set of basis functions for a population
of shapes, we wish to estimate the multivariate probability dis-
tribution P(T"*) of the wavelet coefficients for that population.
Each shape of that population is then a random realization from
P(T™).

1) Motivation: To model the variation in the data, we take
advantage of the natural multiresolution decomposition of the
wavelet transform and learn variations in the population at every
scale level. This means that small scale variations in the data will
not be overpowered by large scale variations, which would be
the case if we were to apply PCA directly to all the vertices or to
all the wavelet coefficients since PCA is a least squares fit that
finds the first K — 1 major (large scale) variations in a dataset
of K shapes. By finding variations at separate scales, we find
K — 1 variations for each scale of analysis.

We computed the covariance matrix of wavelet basis coeffi-
cients for each scale and observed that the matrices were sparse.
As a comparison, the covariance matrix of the coordinates of
the vertices (used in PDM) is dense. For a given scale, we can
refine our model by taking advantage of this decorrelation prop-
erty and cluster correlated basis coefficients together, with the
constraint that coefficients across clusters have minimum cor-
relation. Coefficients in the same cluster then represent areas
of the shape that have correlated variations in the population,
for a given scale. Coefficients that do not belong to the same
cluster do not tend to be correlated in the population. Since the
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Fig. 10. Tllustration of band creation algorithm.

wavelet coefficients across clusters are uncorrelated, they are
also independent under the Gaussian assumption (inherent when
we apply PCA analysis). Therefore, the overall joint probability
function of the wavelet coefficients P(I'*) can be modeled as the
product of the joint probability functions of smaller uncorrelated
clusters of coefficients. Practically, this means that we can apply
PCA to each cluster of coefficients and we obtain modes of
variations for each cluster at a given scale. This decomposition
increases the number of variation modes (degrees of freedom)
in the shape representation, but hopefully still captures existing
correlation in the data by clustering together the coefficients that
are correlated and learning their modes of variation.

‘We note that this hierarchical decomposition is inspired by the
previous work of Davatzikos et al. [14] who used 1-D wavelet
basis functions to analyze shape contours in 2-D imagery and
performed a scale-space decomposition of the wavelet coeffi-
cients. However, their work assumes that coefficients associated
with wavelet functions of the same scale that are also close in
space are correlated to each other. In this paper, we relax the as-
sumption that only spatial proximity would dictate correlation
and find clusters directly based on the correlation that exists in
the data.

In the next section, we show how to discover the clusters from
the data. In Section IV-B-4, we show how to learn variations
over every cluster and how to combine them into a multiscale
prior.

2) Coefficient Clustering via Spectral Graph Partitioning:
Fig. 10 shows a simple example used throughout this section
to illustrate our clustering algorithm.

To cluster correlated wavelet coefficients, we use a spectral
graph partitioning technique [46]. We use a fully connected
undirected graph G = (V}, E) where each node indexed by

n € Vj is a random variable that represents the coefficients as-
sociated with the nth wavelet basis function of scale j. Each
wavelet basis function n has three associated coefficients per
shape ¢ that represent the x, y, and z variation, and those co-
efficicents are I';”(n), I';¥(n), and I'}?(n). For each shape i,
we combine those three coefficient values associated with basis
function n into one variable u;(n) = T37(n) + TV (n) +
372 (n). Then, the random variable at node 7 is represented by
its K realizations (K is the number of training shapes) U,, =
[ui(n), ..., ux(n).

The welght on the edge that connects node n and m is a func-
tion of similarity between those nodes and is denoted w(n, m).
To define w(n, m), we first find the sample correlation and
p-value between the random variables U,, and U,,

Y (ui(n) = Un) (U(m) = Unn)
nm = 1 (K — 1)0'U,7 oy,, (16)

where U,, is the sample mean of U,,, oy, is the sample standard
deviations of U,,, and K is the total number of samples (number
of shapes in the population).

With the correlation we compute an associated p-value that is
the probability of getting a correlation as large as the observed
value by random chance, when the true correlation is zero. If
Dn,m 1s small, then the correlation 7, ,,, is significant. We pick
a significance threshold of 0.05.

We then define the weight on the edge that connect nodes n
and m to be

if p(n,m) < 0.05

otherwise. a7

w(n, m) = {g"’m’
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This similarity between the nodes can be represented as a
matrix where each entry n, m is the value w(n,m). In Fig. 10,
the similarity matrix V) for the hippocampus population for
all nodes of scale 0 is shown at the top left. The lighter the
entry (n,m), the more similarity between coefficients of basis
n andm.

Using the normalized cuts technique [46], we find the optimal
partitioning of the nodes of Vj0 into two disjoint sets le and Vj2
such that nodes within a partition have the highest similarity and
nodes across partitions have the lowest similarity. For example,
in Fig. 10, nodes 2, 3, 5, 6,7, 8,9, 10, and 11 are put in the sub-
graph V;} and nodes 1, 4, and 12 are put in the subgraph V2. We
show the new similarity matrix where the node indices are re-
ordered such that the first contiguous nodes belong to V! and the
next contiguous nodes belong to V2. This effectively transforms
the similarity matrix into a block diagonal matrix, where entries
outside of the diagonal blocks have minimum correlation.

For each subgraph, we recursively iterate the normalized cuts
until we reach a stopping criterion. The stopping criterion is
based on the quality of the decomposition of each graph, val-
idating whether the total correlation between the coefficients
separated in two subgraphs A and B is less than a percentage p
of the total correlation between coefficients in the combined set
V. So, if V is partitioned into sets A and B, we ensure that

Z Zw(u,v) <p* Z Zw(mv).

u€AveEB ueV veV

(18)

In practice, we use p < 0.1. For example, in Fig. 10, subgraph
V¢ is further subdivided into subgraphs Vg and V.

After the recursion, each subgraph represents a set of wavelet
basis functions whose coefficients are correlated at that scale.
We group these wavelet basis functions into a band, encoded by
an index set B3;; where j is the scale level of the band and b is
the band index. For example in Fig. 10, a total of three bands
were discovered for scale 0: Band By ; corresponding to the
nodes in subgraph V', Band By » corresponding to the nodes
in subgraph V;, and Band By 3 corresponding to the nodes in
subgraph V.

3) Visualizing Clustering Results: The visualization of re-
sulting bands on the mean shape can in itself be interesting
for shape analysis by indicating which surface patches co-vary
across the training set.

To visualize the band B; 5, we visualize the cumulative sup-
port of all wavelet basis in band B ;, on the surface of the mean
shape. This can be done by using as a colormap the sum of the
columns of ®,,, (the basis function matrix) indexed by B . The
higher (lighter) values of the colormap then indicate where the
wavelet basis functions in the band have support. This is shown
in Fig. 10 at the bottom right for all three bands of scale 0.
Band By ; indicates correlated variation at the anterior/lateral
side of the hippocampus (the wider portion of the shape) for
that population. Band By » indicates correlated variation at the
posterior/lateral side (the thinner portion) and Band By 3 indi-
cates variation on the medial side (the portion that appears at the
bottom in the figure).

Fig. 11 shows the result of the recursive clustering for the first
scale level for the left hippocampus data in the first two columns.
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We used 20 training shapes to create the graph. Each row corre-
sponds to a scale level. The first column shows the initial sim-
ilarity matrix for each level. The second column shows the re-
sulting partitioned similarity matrix. As expected, the off-diag-
onal interband covariance is minimal. There are various band
sizes, due to the fact that new bands are only recursively divided
if condition (18) is met. The last three columns show the loca-
tion of a selected band and the variation found within that band,
as will be explained next.

4) Building Prior: The final step for building the prior con-
sists of finding variations within each band of wavelet coef-
ficients. We call this approach the wavelet distribution model
(WDM).

Given a band index set B; 5, we create a filter matrix F; 5 that
selects the wavelet basis functions in the band B; ;. We then
select the wavelet coefficients corresponding to band B;; for
shape 7 using the following:

P, 0 0
yt=10 Py, 0 |5 (19)
0 0 Py
7;_:1;

The size of ;7" is 3| B, 4| x 1, where | B; | is the number of
basis functions in B 3.

We learn the major modes of variations in a band just like in
PDM, by calculating the mean

1 XK
==y 20
= ; : (20)
forming a shape matrix
e = T3 Ty @21
and covariance matrix
CIb = (T*50 —T ") (%0 =TT (22)

and then diagonalizing the covariance matrix to find the eigen-
vectors (major modes of variation) U%*. Each column of U7
is an eigenvector of size 3|B; ;| x 1 that represents an axis of
variation for the coefficients I'*s:¢ . In total for that band, we find
3|B; | or K — 1 eigenvectors, whichever number is smaller.

To create the shape prior, we transform the eigenvectors back
into the right dimensions

Ut =phurt (23)

so that the only nonzero entries of U*7:* are at the indices cor-
responding to band B; .

We can visualize the effect of the kth eigenvector for band b
and scale j, U*7*(k), by varying the shape wavelet coefficients
along that eigenvector by an amount o*7-® (k)

T: =T + U (k)b (k) (24)

and then recovering the shape with (10).
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Fig. 11. Coefficient clustering and selected band variation visualization for hippocampus data.

This process is shown for the hippocampus dataset in Fig. 11
for a selected band for four different scale levels. The eigenvec-
tors of lower scale bands represent relatively global aspects of
shape variability, whereas bands at finer (higher) scales repre-
sent higher frequency and more localized aspects of shape vari-
ability. Hence, our technique discovers shape variations at every
scale, where the variations are all the eigenvectors of all the
bands and does not favor the discovery of global variations over
local variations. Additionally, our prior accurately encodes finer
details even with small training sets, since if there are a total of
B bands, there exist on the order of L = B(K — 1) eigenvec-
tors, as opposed to just K — 1 eigenvectors when using PDM.

The full prior contains all the eigenvectors for all bands and
all scales in a matrix U™ of size 3M x L if there are L eigen-
vectors in total.

A shape 7 can then be represented with the full prior

rL=T Ut L UM,

>

(25)

U*
where «,,, (size L X 1) represents the coordinates of the wavelet
coefficients of that shape in the eigenvector space.
To summarize, each shape ¥ is now represented with the
following equation:

P =3P + IP*T (TF + U*aw,) . (26)
C. Evaluation of Multiscale Shape Prior

In this section, we evaluate the multiscale shape prior based
on WDM and band decomposition for a shape reconstruction

task. The basic idea is to learn a prior with a training set and
to project shapes from a test set onto the prior to evaluate how
close a projected test shape is to its ground truth.

We have three goals for the evaluation.

1) Compare the WDM prior using scale-band decomposition

to WDM using only scale decomposition.
2) Compare both WDM priors to PDM.

3) Test the effect of noise on all priors.

We partition our data with IV shapes randomly into 7" training
samples and N — T testing samples, where T' = [5, 10, 15, 20]
and learn a shape prior from the training set. The prior for PDM
consists of the mean shape and the eigenvectors of the land-
marks on the shape. The prior for WDM using scale only con-
sists of the mean shape, the mean wavelet coefficient vector,
the eigenvectors for coefficients from each shape. The prior for
WDM using scale and bands consists of the mean shape, the
mean coefficient vector, the band indices, and the eigenvectors
for coefficients from each band.

Once we learn the priors from a training set, we project each
shape in the testing set onto the eigenvectors of the prior and
translate the coordinates of the projected test shape to a point
lying at a reasonable distance of the training data (£3 observed
standard deviation). We then reconstruct the modified test shape.
A mean squared error between the vertices of the ground truth
and the reconstructed shape is calculated for all shapes in the
testing set.

To test the robustness of each prior, we also test the recon-
struction in the presence of noise. To add noise to the test shape,
we displace each vertex according to a Gaussian distribution
with mean zero and a standard deviation that is 5% of the
bounding box of the object, as shown in Fig. 14 (columns 2 and
4), producing a shape with noise s,,. Ideally, we would want the
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Fig. 12. Hippocampus dataset. (a) Max squared reconstruction error (averaged
over testing shapes) for various training set sizes. (b) Max squared reconstruc-
tion error with noise projection for various training set sizes.
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Fig. 13. Caudate dataset. (a) Max squared reconstruction error (averaged over
testing shapes) for various training set sizes. (b) Max squared reconstruction
error with noise projection for various training set sizes.

prior to not be affected by the noise and the reconstructed shape
to be close to the ground truth (the shape without noise). To test
this, we project the noisy shape onto the priors, and calculate
the mean squared error between the reconstructed shape and
the ground truth shape.

Figs. 12 and 13 show the maximum squared reconstruction
error, averaged over all the shape in the testing set, for the
various shape priors and various training set sizes of the hip-
pocampus (Fig. 12) and caudate (Fig. 13) datasets. The left
graph show the error using the ground truth as a projection
onto the priors, the right graphs show the error using the noisy
ground truth as a projection onto the priors (the error is then
computed between the reconstructed shape and the original
ground truth). As we can see in the graphs, the WDM prior with
scale and band decomposition outperform the other techniques
for all training set sizes. It is also interesting to see that all
priors are minimally affected by Gaussian noise. Therefore,
although the WDM prior with scale and band decomposition
is more specific than PDM (meaning it represents a population
more accurately), it is not more sensitive to noise.

As an example, Fig. 14 shows the Ground Truth shape, Noisy
shape, and reconstruction with PDM and wavelet shape priors
with ten and 20 training samples for the hippocampus dataset.
The figures show the reconstruction when the Ground Truth
shape is projected onto the prior (column 1 and 3) and when the
Noisy shape is projected onto the prior (column 2 and 4). We
see that details that appear in the WDM are lacking in the PDM
reconstruction, especially on the posterior side (thinner part of
the shape). When comparing WDM with scale only and WDM
with scale and band decomposition, we see that the latter has a
smaller error and contains finer details.
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WDM outperforms PDM due to the fact that more degrees
of freedom are better for the reconstruction task, asimple shape
representation with as many degrees of freedom as the vertices
would reconstruct any test shape perfectly (as long as there are
enough vertices to represent the shape). The real test is during
the segmentation task where too many degrees of freedom might
yield incorrect segmentations in the presence of noise or corrupt
image data, when an evolving shape leaks into areas of the MRI
image that are not part of the shape. This justifies imposing a
shape prior that limits the number of degrees of freedom, but
can hopefully still capture the shape in the test data. We hypoth-
esize that more degrees of freedom in the shape prior are better,
as long as they still constrain the evolving shape to lie within a
shape space targeted to the training set. Our approach attempts
to discover more degrees of freedom, while keeping the shape
prior faithful to the population under study by still captures ex-
isting correlation in the data at every scale.

Next, we explain how to use the WDM with band decompo-
sition prior into an active surface segmentation framework.

V. SEGMENTATION WITH MULTISCALE PRIOR

In order to exploit the multiscale prior, we derive a parametric
surface evolution equation by evolving the PCA shape coeffi-
cients o directly. As the surface evolves to fit the image data,
we constrain the weights o to remain within +3 standard devia-
tion of their values observed in the training set. The parameters
of our model are the shape parameters «, as well as pose param-
eters that accommodate for shape variability due to a similarity
transformation (rotation, scale, translation) which is not explic-
itly modeled with the shape parameters.

A. Pose Parameters

Given a surface mesh with N vertices X : [1,..., N] — R?,
expressed in homogeneous coordinates so that a mesh point is
denoted by (i) = x; = [z, i, z;, 1]7, a transformed surface
3. is defined by

%(i) = T[pIZ(0).

The transformation matrix 7'[p] is the product of a translation
matrix with three parameters ¢, Z,,, £, a scaling matrix with one
parameter s, and a rotation matrix with three parameters wy, wy,
w,, using the exponential map formulation [47].

27)

B. Shape Parameters

A surface point X(z) can be represented in the wavelet basis
using the full formula (26)

®,,(i,:) 0 0 o
X 0  ®,.0i,:) 0 PT(T*4+U*a)| (28)
0 0 ®,.(i,:)

where the function H : [3N X 1] — [4 X N] rearranges a
matrix to have the correct homogeneous coordinates and ®,,, (7, :
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Fig. 14. Reconstruction task for test shape using ten training shapes (first two columns) and a test shape using 20 training shapes (last two columns).

) is a row vector of all the basis functions evaluated at point
x;. The weight parameters &« = [aq,...,ar] (where L is the
total number of eigenvectors of the shape prior) are the shape
parameters of our model.

By combining (27) and (28), the shape to be evolved is

$(0) = Tlp] (50) + H (1P (% + U%a) ) (29)

where we use the tilde notation ¥ to indicate that ¥ is evolving.

C. Segmentation Energy

The boundaries of the brain structures we are segmenting do
not always exhibit a strong image intensity gradient. Therefore,
using an edge-based force would not be sufficient to drive a cor-
rect segmentation. Region-based energies have been developed
to adress this issue, where the force that influences the evolu-
tion of a contour depends on more global statistical information
[12], [13]. We use a discrete version of the region-based force
based on learned intensity statistics from the training set [13]

E(a,p) = / L(X)d% (30)

X€ER

where R is the region inside the evolving surface % and the force
is I(x) = —log(Pr(1(X))/Po(I(x))) where I(X) is the image
intensity at a point X located inside the region R of the evolving
surface, Py(I(x)) is the probability that a point X with intensity
I(x) belongs to the interior of an object to be segmented in
the image, and Py is the probability that the point belongs to
the exterior of the object to be segmented. The segmentation
energy is minimized when the surface evolves to include points
that have maximum L (points that have a higher P; than Pp).
To estimate the probability density functions Pr and Py from a
training set, we collect sample voxel intensity values inside and

outside the segmented shapes in a neighborhood of width ten
pixels around the boundary and use Parzen windows [45].

The surface evolution is defined by a gradient flow of X that
minimizes the energy in terms of the pose p and shape param-
eters . We augment the parameters p and a with an artificial
time parameter ¢ and find gradient descent equations dp/dt and
da/dt by solving dE(p(t), a(t))/dt = 0. We use the area for-
mula [48] and then the divergence theorem to express the region
integral in (30) as a surface integral and discretize the result to
apply the result to a surface mesh (see Appendix B below for
the full derivation). The gradient flow with respect to each pose
parameter p;, € p is given by

dpr. A%\ -
X;EX
with
dx;  dx(i) dT[p]..,.
= = Z ).
dpx dpr dpr (¥

Here, ./V denotes the inward normal of surface point X; ex-
pressed in homogeneous coordinates and the image force L is
evaluated at points on the surface boundary of X.

The gradient flow with respect to each shape parameters a, €
« is given by

do _ N
— = ; (L(xz) o ,N) (32)
x; EX
where
o= e = TR (TP U B))

Note that for a given ay, the evolution equation is projecting
the image measure L onto the principal component U*(:, k) (or
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more precisely its backward wavelet transform into the space
domain) corresponding to ay. See Appendix B for all of the
details of the derivation.

D. Parameter Optimization via Multiresolution Gradient
Descent

We can now use the gradient (31) and (32) to conduct a pa-
rameter optimization via gradient descent. Explicitly, the update
equations are

p(t+1) =p(t) + 552_‘; (33)
a(t+1) =a(t) + 522 (34)

b dt
where 8¢ and 6} are positive step size parameters, dp/dt is
given in (31), and da/dt is given in (32) and (¢ + 1), p(t + 1)
denote the values of the parameters a and p at the (¢ 4+ 1)th
iteration of the surface evolution.

We start with an initial shape and iterate between (33)
and (34). We update the « parameters in a multiresolution
fashion. Since each shape parameter «; corresponds to a
band at a wavelet scale j, we first only update « coefficients
corresponding to the coarsest level bands (j = 0). Once the
coordinates of the evolving surface change less than a threshold
value v, (in millimeters), we add the « parameters of the next
scale level to the gradient and update (34). This results in a
more stable segmentation since few global parameters are first
updated when the shape is far from the solution and more
localized parameters are added as the shape converges to the
solution. _ _ B

We start with (33) until (X' — X)) < v, where X' is the
evolving surface at time ¢ and vy, is a threshold value in millime-
ters. We then run (34) for one iteration and iterate the process.
At each « iteration, we ensure that the value of the o parame-
ters stays within £3 standard deviation of the observed values
in the training set. After each iteration, the updated shape and
pose parameters are used to determine the updated surface.

E. Results of Segmentation

1) Experimental Setup: In this section, we test our segmen-
tation algorithm that uses the region based force described in
the previous section and evolves in the WDM shape prior space
on the left caudate dataset and the left hippocampus dataset. We
call this algorithm WDM/MSCALE. As a comparison, we also
apply to the same dataset an active shape model (ASM) algo-
rithm that uses the same region-based force but evolves in the
PDM shape prior space (note that this is a modified version of
the ASM algorithm published in [17] since we evolve the eigen-
vector weights directly instead of the mesh points). We call this
algorithm PDM/ASM. We also test as a simple active contour
algorithm that uses the same region-based force, but no shape
prior, and call this algorithm NSP/AC (No shape Prior/Active
Contour).

For both the WDM/MSCALE and PDM/ASM algorithms,
we use the same training, testing shapes, and keep 100% of
the eigenvectors for both the PDM and WDM representation.
The landmarks for ASM are the vertices of the surface, after
remeshing and alignment. These are the same vertices used to
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Fig. 15. Influence of step size 63 on the mean error, using five test shapes for
both PDM/ASM and WDM/MSCALE. z axis is value 1/6¢.

calculate the spherical wavelet coefficients used for the WDM
shape representation. The shape parameters for ASM are the
weights of the principal components that result from a PDM
analysis.

Two main parameters of our technique are: 1) whether we
truncate the coefficients, as described in Section II and 2) the
number of training shapes. We vary both (1) and (2) for our
experiments.

For the left caudate dataset and the left hippocampus, we
learned a shape prior from varying sizes of training set shapes
([5, 10, 24] for the caudate dataset and [10, 15] for the left hip-
pocampus), with and without truncation, and used the remaining
shapes as a test set. We use spherical wavelet basis functions of
scale up to 7 = 4. We learned the mean position p,,, of the cau-
date shapes in the MRI scans (in patient RAS coordinates, de-
scribed in Appendix A). To initialize the segmentation, we use
the mean caudate shape learned during the training phase and
positioned it at position p,,, in the scan to be segmented.

For all three algorithms, the threshold parameters were
chosen to be small enough to test for convergence. We pick
vp = Uq = 0.02 mm. The step size parameters &5, &} also
influence the convergence of the algorithm. Since we cannot
directly interpret a change of « value in terms of euclidean
distance, we ran an experiment with five test shapes and a
binary image (where the voxels inside the test shape are set to 1
and outside are set to —1) and varied the 65 parameter to look
at its influence on the average mean error (in millimeters). The
results are shown in Fig. 15 for the left caudate dataset, where
the x axis shows the value 1/65*. The figure shows that as 1/6"
increases (63 decreases), the error gets smaller, until 63 = 1/6
for both WDM/MSCALE and PDM/ASM. After that value,
the error value stabilizes. A similar analysis made us choose
parameters 6 = 0.001 for translation and 6 = 0.0001 for
scale and rotation.

To measure the discrepancy between segmented shape (3)
and ground truth (G) (obtained from the hand-segmented label-
maps), we use the Hausdorff distance H(G,Y) that measures
the maximum error between the boundary of two shapes G and
3., as well as the average surface error for the two shapes G and
.. Both the Hausdorff distance and average surface errors are
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Fig. 16. Left caudate dataset: surface evolution using ground truth label-map
as image force for PDM/ASM (top rown) and WDM/Mscale (bottom row) algo-
rithms, with 24 training shapes. Ground truth is shown in red (light-gray if seen
in grayscale), evolving surface in blue (dark gray if seen in grayscale). (a) ASM,
iter = 1. (b) ASM, iter = 25. (¢c) ASM, iter = 122.(d) MSCALE, iter = 1.

(e) MSCALE, iter = 96, levels 1-2 active. (f) MSCALE, iter = 122, levels
1-5 active.

averaged over all shapes of a test set to obtain a global error
measure for a training set size.

2) Results: To validate our algorithm, we first use the Ground
Truth label-map as the image force in (31) and (32) by replacing
L with a value of 1 inside the (known) object and —1 outside.
The end goal is to validate whether the surface evolution con-
verges to the right solution, given perfect image information.
Since we are evolving in the space of the shape prior, the dis-
crepancy between the PDM/ASM and WDM/Mscale algorithm
is due to the expressiveness of the shape prior. Fig. 16 shows
the result for the left caudate for a training set of 24 shapes.
The final segmentation with the multiscale prior captures more
of the shape and finer details than the ASM segmentation. Fur-
thermore, we see that for as the scale level is increased for the
« parameters, the Mscale segmentation is able to capture finer
details. Fig. 17 shows the result for the left hippocampus for
a training set of ten shapes. Again, the WDM/Mscale captures
more details of the surface.

To validate the full segmentation algorithm, we use the pro-
posed image force in (30). The results of the validation for both
algorithms are obtained by varying training set size and whether
truncation is applied to the WDM shape prior or not. For a given
training set size, the error is given as an average Hausdorff dis-
tance for all test cases in Fig. 20 for all algorithms and both
structures. The error is also given as an average surface error
for all test shapes in Fig. 21 for all algorithms and both struc-
tures.

We see that in all cases, the three algorithms with a shape
prior outperform the active contour evolution without a prior.
The results also show that both the WDM/MSCALE algorithms
(with and without truncation) consistently outperform the ASM
algorithm. Overall, the MSCALE algorithm without truncation
outperforms the MSCALE algorithm with the hausdorff error,
but not for the average surface error measure. This difference
is more pronounced for the caudate dataset and small training
set sizes. We hypothesize that the maximum error is most af-
fected by the truncation since most of the truncated coefficients

B3
LA

Fig. 17. Left hippocampus dataset: surface evolution using ground truth
label-map as image force for PDM/ASM (top row) and WDM/Mscale (bottom
row) algorithms, with ten training shapes. Ground truth is shown in red
(light-gray if seen in grayscale), evolving surface in blue (dark gray if seen in
grayscale). (a) ASM, iter = 1. (b) ASM, iter = 50. (c) ASM, iter = 102.(d)
MSCALE, iter = 1. (e) MSCALE, iter = 50, levels 1-2 active. (f) MSCALE,

iter = 94, levels 1-5 active.
(a) (b) ()
(e) ®

Fig. 18. Left caudate dataset: surface evolution using density estimation as
image force for ASM (top row) and Mscale (bottom row) algorithms, with 24
training shapes. Ground truth is shown in red (light-gray if seen in grayscale),
evolving surface in blue (dark gray if seen in grayscale). (a) ASM, iter = 1. (b)
ASM, iter = 32.(c) ASM, iter = 202.(d) MSCALE, iter = 1.(e) MSCALE,
iter = 150, levels 1-2 active. (f) MSCALE, iter = 202, levels 1-5 active.

are at finer (higher) scales and high frequency differences are
more visible with a maximum operator than an averaging oper-
ator. However, the effect of truncation needs to be further inves-
tigated in future experiments. The results also show that overall
the PDM/ASM error is more affected by the training set size
than the MSCALE error, as previously reported in [4].

Fig. 18 qualitatively compares the segmentation of the
Left Caudate for a training set size of 24 shapes for both the
PDM/ASM and WDM/MSCALE (with truncation) algorithms.
The MSCALE algorithm is more accurate and captures finer
details, especially at the tail of the caudate. Fig. 19 compares the
segmentation of the Left Hippocampus for a training set size of
ten shapes for both the PDM/ASM and WDM/MSCALE (with
truncation) algorithms. We see that the MSCALE algorithm
result is closer to the Ground Truth than the PDM/ASM result.

The results show that the MSCALE representation with more
degrees of freedom than ASM/PDM is able to better segment
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Fig. 19. Left hippocampus dataset: surface evolution using density estimation
as the image force for ASM (top row) and Mscale (bottom row) algorithms, with
ten training shapes. Ground truth is shown in red (light-gray if seen in grayscale),
evolving surface in blue (dark gray if seen in grayscale). (a) ASM, iter = 1. (b)
ASM, iter = 134. (c) MSCALE, iter = 1. (d) MSCALE, iter = 102, levels
1-5 active.

the test data (in terms of mean squared distance to the ground
truth). However, the results also show that although the evolu-
tion without shape prior has more degrees of freedom, it has a
higher mean and Haussdorff error when compared to our tech-
nique. These results suggest that more degrees of freedom are
better, as long as they still constrain the evolving shape to lie
within a shape space targeted to the training set. In this paper,
we propose one type of scale-space decomposition based on cor-
relation of spherical wavelet coecients at a given scale. It would
be interesting to experiment with other types of decomposition,
perhaps using other L? basis functions or assuming more com-
plex probability distributions for the shape features and using
higher moments for decomposition.

We note that for both structures, the segmentation is not fully
accurate due to nonperfect image statistics, meaning that that
the statistics learned on the training set (the image term L based
on P, the probability of a voxel being inside the shape, and Pp,
the probability of a voxel being outside the shape) do not per-
fectly delineate the shape in the testing sets. Some voxels that
belong to the Ground Truth test shape have a higher probability
of being outside the shape than inside, and therefore the image
force at that pixel is erroneous. Finding better image statistics
as region-based forces is an active area of research, and other
image terms could easily be substituted or added to L previ-
ously defined. The main focus of this paper, however, is to see
whether the WDM prior can help drive a more accurate segmen-
tation than a PDM prior, for a given image force. Both segmen-
tation algorithms run on average 1 to 2 min (depending on the
number of iterations needed for convergence) on a Pentium IV
2 GHz using nonoptimized MATLAB code and therefore have
comparable running times. The prior computation time takes on
average 1-2 min for PDM and 4-5 min for WDM for 20 shapes.

VI. DISCUSSION

By using the spherical wavelet transform as shape represen-
tation, we have been able to take advantage of two types of de-
composition: scale decomposition by using the transform struc-
ture and space decomposition by clustering coefficients based
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on correlation of the wavelet coefficients for the data we are
analysizing. We have demonstrated that our spherical wavelet
based technique WDM is a better shape prior when used in a
segmentation task than ordinary PDM. We note that if the WDM
technique is applied to other anatomical structures where the
decorrelation property does not exist at particular scales, our
technique will nicely default to including all coefficients from
that scale into a single band.

Using this representation and prior, we presented a
coarse-to-fine segmentation algorithm. Our results show
that the proposed segmentation algorithm outperforms standard
ASM. One advantage of the technique is the ability to evolve
coarse scale parameters first, in order to quickly bring the
evolving shape close to the solution and then evolving finer
scale parameters to improve the fit. The technique is general and
can be used with any kind of prior based on WDM, regardless
of the decompositions used.

The general framework presented in this paper can be ex-
tended in several ways to benefit shape analysis and segmen-
tation. So far, we have focused on a region-based energy in the
formulation of the active contour given the lack of strong gra-
dients around boundaries of subcortical structures, but it would
be interesting to combine region-based forces with edge-based
forces for other types of structures with stronger edge informa-
tion. Another area of research would be to use other types of
nonlinear prior estimation techniques over the wavelet coeffi-
cients, such as kernel PCA and generalized PCA. Additionally,
our framework could be extended to implicit representations and
a level set evolution by using standard 3-D wavelets directly on
the grid. The scale-space decomposition algorithm to find the
bands, as well as the segmentation algorithm, would translate
nicely to this new representation. The wavelet transform could
also provide a high compression for the implicit representation,
given the redundancy present in a distance transform, typically
used to implicitly represent curves and surfaces.

Our methodology finds independent shape variation pro-
cesses at multiple scales and multiple locations by adaptively
clustering correlated wavelet coefficients at each scale into
bands. This shape representation itself and the band structures
can be very interesting for shape analysis and classification. We
can compare, for example, the band structures of a population
with a neurological disease, versus a population without the
disease. In our future work, we plan to investigate how the
wavelet representation and the band structures can be used
for classification. Our representation can also help physicians
visualize variations specific to brain structures for a given
population, at various scale levels.

APPENDIX A

In this appendix, we show how to consistently pick three
corresponding points (X, Xs, Xg) on each shape of the hip-
pocampus and caudate population in an automatic way. These
three points will be used as boundary conditions of the con-
formal mapping so that x, is mapped to the north pole of the
sphere, xs is mapped to the south pole, and xg to the point on
the equator that intersects the Greenwich meridian. The steps
are as follows.
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Fig. 20. Average Hausdorff error distance in millimeters, for all shapes of a test set, as a function of training set size for (a) left caudate and (b) left hippocampus
dataset.
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Fig. 21. Average surface error distance in millimeters, for all shapes of a test set, as a function of training set size for (a) left caudate and (b) left hippocampus
dataset.

1) Let ¥ (R — R?) be a mesh in RAS patient coordinate 5) Extract the principal axes of the shape by finding the eigen-

space, with [N points denoted x; ...xy. The RAS co- vectors of the weighted moment tensor (x;(k) means we
ordinate space signifies that the first axis is the patient’s are taking the k" coordinate of x;)
left-right (LR) where left is negative and right is positive,
the second axis is the patient’s posterior—anterior (PA), and 4 4 ' '
the third axis is the patient’s inferior—superior (SI). %ilggilgg % Zggizgg %ilggilgg (37)
2) For each point x; on the mesh, let a(x;) be the sum of one- D Xt 3)Xt ) S x3)x(2) S xt'(?))xt'(?))
third of the triangles’ area that have x; at its vertex. Hence, i3 ¢ ¢ ¢ ¢
a(x;) measures the portion of surface area attributed to (xi)
vertex x;. T=T a X;) (38)
3) Calculate the weighted mean of the surface X;)
N T=VDVT. (39)
_ i (X)X ,
m=-—_—N, - (35) 6) Reorder the eigenvectorsto atmost L — R, P — A, I —
iz 0(x0) S. The axes are shown in Fig. 22 for three hippocampus
4) Center shape ¥ around its mean and three caudate shapes. The magenta axis is LR, the blue

axis is PA, and the green axis is IS.
7) Let xx be the farthest surface point from the center of the
Y =% —m. (36) shape in the A direction of the PA axis (shown in blue in
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(d) (e) ®

Fig. 22. Example of principal axes and three points X 5, X 5, and x i found on
three left hippocampus and left caudate shapes.

(d) (e ®

Fig. 23. New point x 5 is found such that it is the farthest point on mesh from
xn (in geodesic distance) for three left hippocampus and left caudate shapes
shown in Fig. 22.

Fig. 22) and x be the surface point in the P direction of the
PA axis (shown in yellow in Fig. 22) and x g be the surface
point in the L direction of the LR axis (shown in magenta
in Fig. 22).

8) Since the xx and xg should be as far as possible, we
change the x g location to be the farthest point (in geodesic
distance) from xp. The distance is calculated on the
mesh, using Dijkstra’s algorithm as an approximation of
the geodesic distance. We show the result of this step on
Fig. 23 for the same six shapes.

APPENDIX B

In this appendix, we give the main results of the volume-
weighted gradient flow in [49] and [50]. Note that this deriva-
tion applies to /N dimensions, but here we take the special case
N = 3. Let R be an open connected bounded subset of R? (the
region inside the surface) with smooth boundary X (the surface).
Let ¢! be a family of embeddings, such that ¢° is the identity.
Here, we consider the case where the given surfaces depend
upon a parameter p that varies with time. Let L : R* — Rbe a
C* function. Setting pg for p(t)|:=o and R(p(t)) := ¢*(R(po))
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and X(p(t)) := ¢'((po
L-weighted volumes:
E(pt) =
R(p(t))
- [ o'
R(po)
where |.J| is the determinant of the Jacobian resulting from the
change of variables. Notice that the first integral depends on ¢,

whereas the second integral does not depend on ¢ via a change
of variables [48].

)), we define the following family of

L(y (p()))dy (p(t)) (40)

(po)) [ 79" (x(po))| dx  (41)

Setting X (po) = (dep*(x(po))/dt)|t=o0
dE (p(t))
|,
_ WHWO (x(po))| dx  (42)
R(po)
L (6 (x(po))) DO O@I| a3
R(po) =
_ d* (x(po)) VL (x(po)) dx (44)
dt =0
R(po)
L (¢° (x(po) div (X (p0)) dx @5)
R(po)
— [ X(o0) VL (xlm)) dx (46)
R(po)
+ [ L)) divo (X (o)) dx 7)
R(po)
= [ div (L (x(p) X () dx (48)
R(po)

where we used a Taylor series expansion |J¢!(x)| =
L+tdiv(X)+O(t?) so that (d|J ¢! (x(po))|/dt)|t=0 = div(X).
Then, using the divergence theorem

dE(p) = / div(LX)dx (49)
U limo R(po)
= - / (LX) - Ndx (50)
(po)
dt
170)

) (52)

E(p(t))

_ dy d. (
Z(p(t)
_ A1) dy\
= i / <L dp) Ndy (54)

Z(p(t))
where N is the inward normal to X.
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To minimize F, and discretizing the result to deal with mesh
surfaces, we obtain

1) _ 5~ <Ld—y> N, (55)

yED dp
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