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Spatial Regularization for fMRI Detection
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Algorithm
  The spatial regularization methods are incorporated into the GLM detector
  Markov priors for activation

•  Capture spatial dependency in activation
•  Overcome over-smoothing effect compared with Gaussian smoothing

  Anatomical information (segmentation) provides further regularization
•  Activation is more likely in the gray matter
•  Spatial dependency is strong within the same tissue, but weak across tissues

Zi: GLM Statistic for voxel i

Wi: Segmentation label for voxel i

Ui: True but unknown activation state and tissue
type for voxel i.

Output of our algorithm: posterior probability of Ui.

(a)  Activation map generated using full-length fMRI signals

(b-d) Activation maps generated using the first 1/3 of the signals:

(b) without spatial regularization.

(c) with 6mm-FWHM Gaussian smoothing

(d) with anatomically-guided MRF spatial regularization

(a) (b) (c) (d)

Results
  Synthetic fMRI Data, ROC Analysis

•  MRF outperforms Gaussian smoothing at realistic noise levels
•  Guassian smoothing is superior at higher noise levels
•  Anatomical information can further improve detection accuracy.

  Real fMRI Data, Visual Comparison of the Activation Maps
• Increase detection accuracy with reduced-length signal

We have developed a method for brain activation detection that employs Markov
Random Fields (MRF) as spatial smoothing priors necessary due to the low
signal-to-noise ratio of the fMRI signal. Furthermore, we extended the MRF prior
to include anatomical information. The anatomical prior, in the form of a
segmented MRI scan, biases the activation detection towards the gray matter
and inhibits smoothing of the activation maps across tissue boundaries. We
have validated the method on a set of digital phantoms and a set of fMRI scans.

We are currently translating this work into 3D Slicer, an open source medical
image analysis and visualization package developed and supported by Core2
activity, and are exposing the functionality through Slicer’s fMRIEngine module. Without Spatial Regularization With Spatial Regularization
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Open source implementation
MRFs with optional support for spatial prior models are being implemented in
3D Slicer.

fMRI analysis:  Design matrix, stimulus schedule, and voxel timecourse
plot of a strong responder are shown (below) for a visuomotor (finger tapping)
task.

Visualization: Resulting parametric map of brain activation computed
using GLM detector is shown as transparent overlay along with outline of MRF
output; analysis and visualization from 3D Slicer’s fMRIEngine module.


