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Abstract
Schizophrenia is associated with subtle

structural and functional brain abnormalities.
Both recent and classical data suggest that it is a
heterogeneous disorder that is clearly heritable.
The cause and course of schizophrenia are
poorly understood, and classical categories of
clinical symptoms have not been particularly
useful in identifying its pathophysiology or
predicting its treatment. The possible genetic
risk factors for schizophrenia are numerous;
however, the connection between the genotype
and the time-course, or the multifaceted symp-
toms of the disease, has yet to be established.
Brain imaging methods that study the structure
or function of the cortical and subcortical
regions have also identified distinct patterns
that distinguish schizophrenics from controls,
and that may identify meaningful subtypes of

schizophrenia. The predictive relationship
between these imaging phenotypes and disease
characteristics such as treatment response is
only beginning to be revealed. The emergence
of the field of imaging genetics, combining
genetic, and neuroimaging data, holds much
promise for the deeper understanding and
improved treatment of diseases such as schiz-
ophrenia. In this article we review some of the
key findings in imaging phenotyping and geno-
typing of schizophrenia, and the initial endeav-
ors at their combination into more meaningful
and predictive patterns, or endophenotypes
identifying the relationships among clinical
symptoms, course, genes, and the underlying
pathophysiology.
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Introduction
In the past 20 yr, significant strides have been

made in imaging the structure and function of
the living human brain. Equal steps have been
made in understanding the human genome and
its role in disease. Particularly unambiguous
advancements have occurred in single-gene
dominant Mendelian disorders such as cystic
fibrosis and Huntington’s disease. Most dis-
eases, however, are not single-gene disorders
and even single-gene diseases can manifest
themselves in a multitude of ways. Complex
behavioral diseases with developmental and
degenerative components such as schizophre-
nia appear to involve the combined effects of
multiple genes and important interactions with
the external and internal environment (Basile
et al., 2002; Kennedy et al., 2003). This com-
plexity has created a roadblock in the clinical,
genetic, and functional understanding of these
diseases. Neuroimaging reveals many impor-
tant aspects of schizophrenia; however, when
considered in isolation, it ignores the strong
hereditary aspect. Conversely, although genetic
studies are powerful, they are also limited in
their explanatory potential, given that monozy-
gotic twin concordance for schizophrenia is
approx 40% (for review, see Tsuang, 1998;
Sivagnansundaram et al., 2003). With its wide
range of symptoms, severity, and cognitive dys-
function, schizophrenia is a good model for
developing the combined field of imaging
genetics. Given the known importance of both
genetics and environment in brain function,
and the role of neuroimaging in revealing brain
dysfunction, the synergism of integrating
genetics with brain imaging will fundamen-
tally change our understanding of normal
human brain function, and in disease.

Mental illness, as well as normal brain func-
tion, has a hereditary component; therefore, it
is essential that the genes related to aspects of
brain development, and mental function and
dysfunction, be considered. It is clear that brain
function mediates mental illness; therefore, use

of advanced brain imaging techniques can
clarify the dysregulation of neural circuits.
Although imaging studies have revealed many
aspects of dysfunction in schizophrenia (e.g.,
Weinberger and Berman, 1996; Bunney et al.,
1997; Weinberger et al., 2001; Fallon et al., 2003;
Potkin et al., 2003) their explanatory power has
been limited by ignoring the well-documented
heritability of schizophrenia in general and the
genetic background of individuals in particular.
Clinical symptom patterns in schizophrenia
may be more distant from the biological mech-
anisms underlying the causes of schizophrenia
than brain images of neuronal circuit dysfunc-
tion (e.g., Basile et al., 2002; Potkin et al., 2002a,
2003b). Discovering new relationships among
imaging, clinical, and cognitive phenotypes,
considered within an individual’s genetic back-
ground, may be critical to understanding the
heterogeneity within schizophrenia.

The clinical presentation of schizophrenia
varies widely, with some clusters of symptoms
beginning in childhood and others beginning
later in life; the majority of the symptoms, how-
ever, begin in early adulthood. Previous clas-
sifications based solely on symptoms, i.e.,
paranoid, simple, disorganized, and undiffer-
entiated, have not been useful to increasing our
understanding of the pathophysiology of schiz-
ophrenia. Any theory of schizophrenia, how-
ever, must deal with the variable pattern of
clinical symptoms in schizophrenia: Some
patients, but not all, experience hallucinations
and delusions (positive symptoms); some
exhibit apathy and social withdrawal (nega-
tive symptoms); some, difficulties in the timing
and coordination of thoughts and memories;
some, difficulties in attention and the organi-
zation of memory; and some experience mood
dysregulation and impulsivity (schizoaffec-
tive and suicidality symptoms). The latter sui-
cidal symptoms have increasingly been
recognized as a separate symptom domain or
subtype (Potkin et al., 2003a), with as many as
40% of schizophrenic persons attempting
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suicide and as many as 9% succeeding (Meltzer
et al., 2003).

Modern pharmacological and rehabilitation
treatments have notably improved the lives of
schizophrenic patients, with decreases in both
positive and negative symptoms, some cogni-
tive improvement, and perhaps a decrease in
depression as well as suicide. Yet despite these
advances, few if any patients return to their
premorbid level of functioning. Most continue
to suffer from some level of hallucination
and/or negative symptoms, occupational and
functional dysfunction, and continuing cogni-
tive deficits. Consequently, many patients
remain only partially responsive to medication
and rehabilitation treatments, and as many as
20% are considered refractory to treatment. Just
as there are significant individual differences
in which clinical symptoms develop, there are
also notable individual differences in the effi-
cacy of pharmacological treatment, as well as
individual differences in the risk for develop-
ing side effects, such as tardive dyskinesia (a
movement disorder primarily involving oro-
facial disfigurement). Thus, there is an obvious
need to better understand the pathophysiology
of schizophrenia and a corresponding need for
improved and possibly individually tailored
treatments. It is likely that some differences in
outcome, drug response and side-effect risk
reflect different endophenotypes, i.e., “meas-
urable components unseen by the unaided eye
along the pathway between disease and distal
genotype, and thus closer to the biological
expression or pathophysiology of the illness
than clinical symptoms” (Gottesman and
Gould, 2003). These measurable components
that distinguish among groups of schizo-
phrenic subjects in our conceptualization
include combinations of clinical symptoms,
cognitive dysfunction, patterns of brain acti-
vation, and genetic influences.

In the following sections we selectively
review some of the imaging phenotypes in the
research literature on schizophrenia; we

overview the basic framework of genetic analy-
sis, and the genetic risk factors and correlations
with schizophrenic symptoms. The issues of
genetic risk analysis and the complexity of
these analyses is explored in their combination
in imaging genetics to uncover potential
endophenotypes leading to the discovery of
validated subgroups within schizophrenia.

Imaging as a Discriminant Among
Schizophrenic Subtypes

The functional and structural abnormalities
distinguishing schizophrenics from nonpsychi-
atric subjects have been comprehensively
reviewed elsewhere (e.g., Shenton et al., 2001;
Fallon et al., 2003). Schizophrenia has long been
acknowledged to be a heterogeneous disorder
(Winokur, 1975; Jeste et al., 1982), though the cod-
ified Diagnostic and Statistical Manual of Mental
Disorders [DSM]-IV subtypes have not been par-
ticularly useful in defining treatment-related dis-
tinctions, with the exception of the paranoid
subtype. Classically, paranoids have been
defined as having a better prognosis; however,
this does not have the support of careful inves-
tigations. We will focus in this section on selected
literature that uses imaging to distinguish among
groups of schizophrenic patients, with the aim
of identifying symptom profiles which predict
treatment response or clinical progress.

Other symptom-based classifications have
shown some physiological underpinnings.
Northoff et al. (2004) studied the relatively rare
subtype, catatonia. Postacute catatonic, akinetic
subjects differed from matched noncatatonic
psychiatric subjects in a functional imaging
study using emotional stimuli, in that catatonic
behavioral symptoms correlated with an
orbitofrontal dysfunction (Northoff et al., 2004).
The orbitofrontal circuitry is implicated in the
control of social function and awareness of social
consequences (e.g., Bechara et al., 1994; Stone
et al., 1998; Heberlein et al., 2004; Roberts et al.,
2004). This dysfunction, in combination with the
clinical symptoms, provides a potential
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endophenotype for greater understanding of
the pathophysiology of catatonia.

The Kraepelinian subtype has been used to
characterize a group of patients with severe
and unremitting course, and poor response to
antipsychotic medication. In an [18F]-Fluoro-
2-deoxy-D-glucose (FDG)-positron emission
tomography (PET) study of serial verbal learn-
ing, Kraepelinian subjects had lower meta-
bolic rates in the frontal lobe and cingulate
gyrus, and hypofrontality in comparison with
non-Kraepelinian schizophrenic patients
(Buchsbaum et al., 2002). Gur et al. (1995) also
used FDG-PET to study metabolic differences
among schizophrenic subtypes of differing
symptom severity, and controls (Gur et al., 1995;
Turetsky et al., 1995). Rather than lower meta-
bolic rates in the frontal areas in the more severe
patients, greater metabolism in the mid-left
temporal area was found generally in schizo-
phrenic patients in comparison with controls.
This was particularly pronounced in the neg-
ative and Schneiderian (specific types of delu-
sions and hallucinations, such as thought
insertion or broadcasting, or voices comment-
ing on subject’s behavior) subtypes but not in
the paranoid subtypes. Lower metabolism in
the left temporal area relative to the right was
correlated with better premorbid adjustment
and better outcome. 

Patients with enduring negative symptoms,
also classified as a deficit subtype, differed from
nondeficit schizophrenic patients in having a
lower frontal but not hippocampal activity dur-
ing a 0–15 blood flow study of working mem-
ory (Heckers et al., 1999). Wolkin et al. (1996)
also found that greater negative symptom
severity correlated with decreased metabolic
response to a conventional antipsychotic treat-
ment (Wolkin et al., 1996). A PET study con-
trasting patients with predominantly negative
symptoms and with predominantly positive
symptoms also indicated the physiological dis-
tinctions among these subtypes (Potkin et al.,
2002b). The ventral, frontal, and temporal

systems of negative symptom patients showed
decreased activation as well as increased activ-
ity of the deep cerebellar nuclei, possibly impli-
cating the cerebellar activity as a mechanism to
compensate for the decreased frontal activity
via cerebello-thalamic-frontal circuitry. These
imaging patterns distinguishing subgroups of
schizophrenia hold promise as endophenotypes
that could point the way to specifically targeted
treatments for these groups.

The time-course of schizophrenic progres-
sion is varied, with episodes of increasing and
decreasing symptom severity, even under the
best medical control. The differences that are
found among long-term chronic schizophrenics
and controls or among chronic schizophrenics
of varying symptom profiles, may be con-
founded with differing antipsychotic regimens.
The study of first-episode patients, either
medication-naive, or after first treatment, is
critical to understanding the progress of the
disease as it controls for chronicity and the
effects of treatment. Such subjects show a
decrease in left entorhinal cortical volume,
which is correlated with the severity of the delu-
sions (Prasad et al., 2004). Deficits in dorsolat-
eral prefrontal cortex (DLPFC) gray matter
have also been observed in such patients; these
DLPFC volumetric differences have been
observed to vary with regulator of G protein
signaling subtype-4 (RGS-4) genotype, con-
sistent with microarray studies of showing
underexpression of RGS-4 in the DLPFC in
schizophrenics (Prasad et al., 2005). Each of these
clinical subpopulations of schizophrenia shows
an imaging phenotype that reveals more about
the pathology of the disease; particularly prom-
ising is the repeated finding of hypofrontality
correlating with the severity of negative symp-
toms, a putative endophenotype that may help
target treatments more effectively. 

Genetic Analyses

Classical studies have involved Mendelian
disorders caused by a single gene; most of these
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disorders have been mapped and cloned, with
resultant increased understanding of the
pathophysiology of the disease. Within the
Mendelian paradigm, a mutation in a single
gene is the only cause of a genetic disease.
According to this paradigm, a “mutation” is a
rare mistake in the DNA sequence of the gene
occurring at a frequency less than 1% in the
general population. Because we have two alter-
nate forms of any given gene (alleles) that make
up a genotype, one inherited from the father
and the other from the mother, a genetic dis-
ease can occur (1) if we inherit one mutated
allele from the father or from the mother (a con-
dition described as “dominant” transmission
of disease) or (2) if we inherit two mutated alle-
les from both parents (a condition referred to
as “recessive”). Typically, Mendelian disorders
have a very low prevalence in the population,
as mutations are rare events that are always
leading to a pathological state. 

Alternatively, there are other variations in
the DNAsequence of the majority of genes that
are much more frequent in the population, but
that do not necessarily lead to a pathological
condition: this variability generates various dif-
ferent forms of the genes (i.e., they create dif-
ferent alleles at almost any given gene, with
minor biochemical/biological consequences
within a range of “normality” for each varia-
tion) that may be responsible for subtle differ-
ences across humans. Considering together all
these small differences and knowing that each
person differs from one another for approx 3–10
millions of these minor DNA variations, it is
easy to understand that such a large allelic vari-
ability is also responsible for the observed dif-
ference of the humankind.

These minor DNAvariations are common in
the general population and they can ultimately
be responsible for several common diseases,
whenever they occur in a particular combina-
tion whose overall effect causes a biochemi-
cal/biological pathological condition. Under
this hypothesis, many common disorders have

nonetheless a genetic component presenting
with a non-Mendelian mode of transmission
that is neither dominant nor recessive, in which
many small DNA variations (alleles), each one
not pathological per se, combine in a “patho-
logical” ensemble. These common differences
in genetic sequence can influence brain func-
tion, symptom constellation, response to med-
ication, and so forth. Some of the complexities
of gene variation and interaction have been
summarized in various reviews (Risch and
Merikangas, 1996; Risch et al., 2002; Kennedy
et al., 2003). Finally, it should be noted that in
common diseases, environmental effects may
be substantial (e.g., diabetes). 

The simplest and most common kind of
genetic (DNA sequence) variation is defined
as single-nucleotide polymorphism (SNP), i.e.,
a difference in a nucleotide at a particular site
of the DNA sequence. Another kind of varia-
tion can be two (or more) nucleotides repeat-
ing a variable number of times, defined as
micro- or mini-satellites. At a particular chro-
mosomal location, only one variant can be
present. When many polymorphic variations,
usually SNPs, are very close to each other along
a chromosomal region of variable size they can
be inherited together and this linear combi-
nation of polymorphisms is termed a haplo-
type. This happens because alleles of
neighboring SNPs are not transmitted inde-
pendently; the measure of their dependency
in transmission is called linkage disequilib-
rium (LD), which ranges from 0 to 1, the last
value representing complete identity across
two consecutive SNPs. The size of such regions
range from three to several hundred kilobases.
The haplotypes thus represent another form
of normal variation across a given region of a
chromosome inherited from parents. Each per-
son has two haplotypes for any such given
region, equivalent to having two alleles at
multiple sites.

Aconsortium has been created (HapMap) to
build the haplotype map of the entire human
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genome: HapMap has developed an initial
investigation of the “best” SNPs to generate
reliable haplotypes, and further refinements
are rapidly progressing (Daly, 2002), making it
possible in the future to incorporate these
advances into neuroinformatics databases and
statistical analyses. To identify the discrete hap-
lotypes across the human genome, the HapMap
consortium has already genotyped more than
1.5 million SNPs, with an open end regarding
how many SNPs will be needed to build an effi-
cient haplotype map. In fact, the driving
hypothesis is that a haplotype map built with
a subset (300,000–1 million) of the total num-
ber of SNPs in the genome (5–10 million) would
enable us to capture the overall information of
the genome itself despite the reduction of the
number of polymorphisms tested. This
hypothesis is supported by our current knowl-
edge of the genome, as we know that each hap-
lotype corresponds to a chromosomal region
of low variability (also called a “block”) inter-
spersed with short regions of few kilobases
characterized by high variability and by the
absence of a block-haplotype structure. Ideally,
these small regions of high variability corre-
spond to areas of recombination, or cross overs,
i.e., regions in which homologous chromo-
somes break during the meioses and then
recombine, allowing for an exchange of DNA
material between the “paternal” and the
“maternal” chromosomes. Thus, genotyping
only those SNPs that univocally detect each
haplotype-block (called haplotype-tagging
SNPs [htSNP]) in a case–control design, we
could identify any gene/variation responsible
for any trait that we want to investigate. At
present, we still do not know the exact corre-
lation between haplo-blocks and genes:
Sometimes one gene corresponds to one block,
in many other cases one gene entails several
blocks, which may also contribute to explain
the evolution of genes and the existence of
“families” of genes with a high degree of sim-
ilarity to each other. Moreover, and probably

depending also on the number of recombina-
tion events that occurred in a given popula-
tion, adjacent haplotype-blocks have a variable
degree of “LD” with one another, as if each hap-
lotype acts like a single polymorphism despite
being made up by some to several SNPs, again
supporting the hypothesis that haplo-blocks
have a reduced degree of internal variability.
Haplotypes interact with each other not only
locally but also anywhere across the genome.
Understanding the role of these haplotypes in
risk of disease, treatment response, and devel-
opment of side effects is a research priority in
for schizophrenia. 

To understand the genetic architecture of
complex traits and to dissect the genetic com-
ponent of the trait is a considerable challenge,
despite the advances in knowledge on this sub-
ject and the sophistication of contemporary
technology. A generally accepted view of
common complex genetic traits is that the
contributing genes are of small or minor effect
as opposed to major genes characteristic of
simple Mendelian traits (Ott and Hoh, 2000).
Opinions differ regarding whether these genes
present with common (Risch and Merikangas,
1996; Chakravarty, 1999) or rare variants
(Terwilliger and Weiss, 1998; Weiss and
Terwilliger, 2000; Pritchard, 2001) and regard-
ing the best way to describe the contribution
that each gene exerts on the trait. Consequently,
there is considerable debate concerning the
appropriate strategy to identify genes for com-
plex disorders.

Linkage approaches have been successfully
applied to cloning more than 1200 genes for
Mendelian disorders but do not have sufficient
power for positional cloning in complex dis-
orders such as schizophrenia, even though they
have enabled the identification of linked chro-
mosomal regions. The emphasis has shifted to
association methods employing candidate
genes and LD mapping with SNPs and haplo-
types (Risch and Merikangas, 1996; Tabor et al.,
2002; Lohmueller et al., 2003). Within the
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association strategy there is a dichotomy
between “sequence-based” and “map-based”
approaches that may also be termed “func-
tional” vs “positional” (Peltonen and McKusick,
2001; Botstein and Risch, 2003). The functional
approach involves selection of candidate genes
based on knowledge of disease pathogenesis,
functions of the selected genes and where appli-
cable data from an animal model of disease.
However, this knowledge is not always avail-
able, particularly for psychiatric disorders. A
map-based approach employing genome-wide
association is today technologically possible,
but cost-effectiveness is still a concern. 

The current approach proposed for associa-
tion mapping of a given candidate gene or of
a (small) region (e.g., Wang et al., 2003) is to (1)
detect informative polymorphisms (=SNPs),
(2) determine the LD pattern across the SNPs
and construct haplotypes, and (3) genotype the
selected htSNPs (e.g., Gabriel et al., 2002).
Haplotypes can significantly improve the
power of association mapping (Davidson, 2000;
Zaykin et al., 2002) especially when we care-
fully consider the LD block structure that is at
the origin of haplotypes (Gabriel et al., 2002).
To implement positional cloning by means of
LD mapping cost-effectively, the candidate
region must be small enough to permit typing
SNPs at an average density of 10 kb (Carlson
et al., 2003; Reich et al., 2003). If so, a reason-
able number of SNPs would be sufficient for
the application of positional cloning. 

Haplotypes may be directly responsible for
the observed variation in the trait of interest,
through the combined effects of multiple
sequence variants on promoter activity or pro-
tein structure and function (e.g., Devlin and
Roeder, 1999; Drysdale et al., 2000; Hohe et al.,
2000; Joosten et al., 2001). Even when a single,
presumably unobserved polymorphism
accounts for the trait variation, nearby markers
may form haplotypes that are in much higher
LD with that functional polymorphism than
are the individual markers, because the dise-

quilibrium between a single site and whole
haplotypes includes all pairwise as well as
higher order disequilibria terms (Bennett,
1954). Thus, even considering that “complex”
alleles (i.e., alleles in which there are multiple
polymorphic variants jointly present) repre-
sent the true risk factors for complex traits
(e.g., Kim et al., 2003), a haplotype LD strat-
egy allows them to be detected (Botstein and
Risch, 2003).

Genetic Risk Factors 
and Correlations

Genetic studies of schizophrenia such as
those summarized in the following section
have classically used the “candidate gene”
approach; this utilizes current knowledge of
brain chemistry and pharmacology to select
genes that are most likely to contribute to spe-
cific phenotypes (such as cognitive features,
drug response, or distinct side effects).
Polymorphisms in or near the coding region
of a candidate gene that encode a protein struc-
ture important in cognition or with which a
drug is thought to interact are assessed using
molecular genetic techniques. Subsequently,
the frequency of one polymorphic allele is com-
pared with the frequency of the other(s) to sub-
stantiate the role of the polymorphism in the
expression of a phenotype (“allelic association
design”). However, the detection of a positive
association between a given genotype and a
determined phenotype does not prove a causal
relationship. In addition to the possibility of
false positives, the marker allele used for geno-
typing may not be the true function-altering
variant, but might be only in close physical
proximity at a genomic level.

The examples given below demonstrate the
levels and range of complexity of genetic influ-
ences on schizophrenia and consequently the
need to develop new analytical approaches.
These approaches must be multivariate and
expandable to reflect the inevitable increasing
complexity.
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Genetics of Brain Development 
and Structure
The mechanisms underlying development

of the mammalian central nervous system are
of fundamental importance for research into
schizophrenia and psychiatric disorders in
general (see Klempan et al., 2005, for a more
extensive review). The processes of neurula-
tion, patterning, neuronal specification, and
synaptogenesis, as well as the functional
dynamics of neurotransmission, are governed
by the coordinated actions of products from a
wide array of genes. This pattern of gene
expression has been related to the etiology of
schizophrenia, although not so successfully to
clinical subtypes of schizophrenia. Table 1
summarizes many of the genes implicated in
schizophrenia.

For example, early in brain development,
during the neurulation stage, regionalization
within the developing telencephalon is con-
trolled by the ventralizing properties of the
sonic hedgehog (Shh) gene expression (Kohtz
et al., 1998), and distinct dopaminergic and
serotonergic neuronal subpopulations are
induced along the anterior–posterior axis at
different times by Shh signaling (Hynes and
Rosenthal, 1999). Agene downstream from Shh
action in the neurulation stage is NOTCH4. The
description of a strong association between a
promoter base-pair substitution and exon 1
(CTG)n repeat of the NOTCH4 gene with
schizophrenia (Wei and Hemmings, 2000) in a
region (6p21.3) previously associated with
schizophrenia (Schwab et al., 1995; Straub et
al., 1995) has not been replicated (McGinnis et
al., 2001; Sklar et al., 2001; Ujike et al., 2001; Fan
et al., 2002; Swift-Scanlan et al., 2002). The first
study now appears more likely to be a false-
positive association, highlighting the need for
better statistical procedures in genetic studies
of schizophrenia to control for false-positives
without losing power to detect true effects 
(discussed later in further detail).

Cell adhesion molecules (CAMs) are cell
membrane proteins that mediate adhesion
between neural cells exerting a key role in cell
migration, morphogenesis, and differentiation
in the developing brain. Subtle changes in neu-
ral CAM (NCAM) gene expression in the schiz-
ophrenia brain might be responsible for the
observed abnormalities of cell migration in
schizophrenia. A number of studies have
revealed NCAM alterations in schizophrenia,
including decreased polysialylated NCAM in
the hippocampus (Barbeau et al., 1995), and
increased NCAM in the prefrontal cortex and
hippocampus (Honer et al., 1997) suggesting
that further genetic investigation is warranted.

Reelin plays a major role in the layering of
neurons into their specific brain target area,
including the prefrontal cortex and hip-
pocampus, once their migration is completed
(Rice and Curran, 2001). In humans, the reelin
gene (RELN) maps to 7q22 (DeSilva et al., 1997).
RELN is abundantly synthesized and secreted
in the extracellular matrix during early stages
of brain development. Reelin continues to be
synthesized throughout life by a select popu-
lation of GABA-ergic interneurons including
layers I and II of various cortical areas
(Rodriguez et al., 2000). The expression pattern
of reelin has been investigated as a possible
etiological factor underlying the neurodevel-
opmental anomalies in schizophrenia. Two
independent groups observed a 30–60% reduc-
tion of RELN expression in the prefrontal cor-
tex and in the hippocampus in schizophrenic
patients (Fatemi et al., 2000; Guidotti et al.,
2000). Although several polymorphisms have
been described for RELN, no detailed suffi-
ciently powered studies investigating the pos-
sible role of RELN sequence variants in
schizophrenia have been reported. 

The primary molecules involved in regula-
tion of neuronal survival and differentiation are
the neurotrophins, including neurotrophic fac-
tors (NT1–5) and brain-derived neurotrophic
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Table 1
Neurodevelopmental Genes and Reports of Expression-Based and Genetic Analysis in Schizophrenia

Gene Function Locus of Interest Genetic and Expression-Based Analysis

Mash1 Neurulation –
Notch NOTCH4 (6p21.3) Wei and Hemmings (2000)
Delta DLL1 (6q27)
Neurogenin NGN1 (5q23-q31)
NeuroD NEUROD (2q32)
Sonic Hedgehog SHH (7q36)
Wnt WNT1 (12q12-q13) Cotter et al. (1998); Miyaoka et al. (1999)
Krox20 Patterning EGR2 (10q21.1-q22.1)
Hox HOXB (17q21.3) Kennedy et al. (1992)
Dlx DLX1 (2q32)
Emx EMX2 (10q26.1)
Gbx GBX2 (2q36-q37)
Nkx TITF1 (14q13)
Otx OTX2 (14q21-q22)
Pax PAX6 (11p13) Stober et al. (1999)
POU POU3F3 (3p14.2)
NCAM Cell migration/ NCAM1 (11q23.1) Doherty et al. (1990); Vicente et al. (1997)
L1CAM neurite 

extension
N-Cadherin NCAD (18q11.2)
Reelin RELN (7q22) Fatemi et al. (2000); Guidotti et al. (2000) 
NGF Neuronal NGFB (1p13.1)
BDNF Survival BDNF (11p13) Muglia et al. (2003)
NT-3 NTF3 (12p13) Nanko et al. (1994)
NT-4/5 NTF5 (19q13.3)
GDNF GDNF (5p13.1-p12) Lee et al. (2001)
CNTF CNTF (11q12.2) Thome et al. (1996)
Chondrex Cell growth/ YKL40 (1q32.1) Chung et al. (2003)

migration
GSK3 GSK3 (3q13.3) Nadri et al. (2004)
DISC1 DISC1 (1q42) Hodgkinson et al. (2004)
SNAP25 Presynaptic/ SNAP25 Tachikawa et al. (2001); Wong et al. (2003)

(20p11.2-p12)
Syntaxin exocytosis STX1A (7q11.23) Wong et al. (2004)
Synaptobrevin VAMP1 (12p)
Synapsin SYN3 (22q12.3) Ohmori et al. (2000) 
Complexin CPLX2 (5q35.3) Harrison and Eastwood (1998) 
Synaptophysin SYP (Xp11.23-

p11.22)
Synaptotagmin SYT1 (12cen-q21)
NMDA Postsynaptic GRIN-1, GRIN-2A,B Mohn et al. (1999); Martucci et al. (2003)
Myelin Myelination MOG (MAG, MBP) Malfroy et al. (1995); Zai et al. (2004)
Oligodendrocyte
Glycoprotein
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factor (BDNF). The neurotrophins play vital
roles in cell survival and differentiation in all
regions of the brain. They may be associated
with reductions in cortical and whole brain vol-
ume (Lawrie and Abukmeil, 1998) and the high-
neuronal density (Selemon et al., 1995) seen in
morphometric analyses of the schizophrenic
brain. Postmortem studies of schizophrenia
patients have shown alterations of BDNF pro-
tein levels, specifically increases in cortical
regions and decreases in the hippocampus
(Durany et al., 2001; but not Takahashi et al.,
2000, who found increases in both regions). 

Genetic investigation of the BDNF gene in
schizophrenia was initiated following discov-
ery of a dinucleotide repeat polymorphism
located within the intronic region of the gene
(Proschel et al., 1992). The initial published
report included a Japanese case–control study
(Sasaki et al., 1997) and a large Irish study (Hawi
et al., 1998), both reporting negative findings
for this polymorphism. In contrast, the recent
results of transmission disequilibrium test
(TDT)-based analysis of a schizophrenia
sample of Italian and Canadian families
(Muglia et al., 2003) have shown increased
transmission of the 170 bp allele (p = 0.0081)
and reduced transmission of the 174 bp allele
(p = 0.010) to probands.

The shape and extent of adult brain struc-
tures are highly dependent on neuronal
activity. An integral part of neuronal activity
is the process of neurotransmission. At its most
fundamental level, neurotransmission
involves exocytosis, which is regulated most
centrally by a group of proteins known as
soluble N-ethylmaleimide-sensitive attach-
ment factor protein receptors (SNAREs). The
core SNARE proteins include synaptosomal-
associated protein of 25 kDa (SNAP-25), the
syntaxins, and vesicle-SNAREs such as the
synaptobrevins. Postmortem assays of SNAP-
25 immunoreactivity in schizophrenia have
revealed changes in the inferior temporal and

prefrontal association cortices (Thompson
et al., 1998), with decreased expression in cer-
tain areas but increased expression in others.
A study of hippocampal connectivity found
reduced cortical SNAP-25 protein, most
notably in the terminal fields of entorhinal
cortex projections of schizophrenics (Young
et al., 1998), and in the cerebellum of schizo-
phrenics (Mukaetova-Ladinska et al., 2002).
The original SNAP25 findings in area 10 (along
with reduced synaptophysin expression) was
confirmed, yet showed no alteration in SNAP-
25 mRNA expression (Karson et al., 1999). 

The myelin oligodendrocyte glycoprotein
(MOG) gene represents an intriguing candi-
date gene for schizophrenia and brain structure/
function phenotypes based on its role in brain
development and the immune system. MOG
is directly involved in the development of white
matter in the brain (reviewed by Davis and
Haroutunian, 2003), and important changes
have been found in white matter gene expres-
sion in postmortem schizophrenia brains.
Hakak et al. (2001) screened homogenized tis-
sue from schizophrenia brains vs matched con-
trols for expression levels of 6500 genes. Of
these, only seven were significantly downreg-
ulated in schizophrenia. Remarkably, six of
those seven genes were myelin related. In a
very recent replication study by the same
group, the postmortem brains of 13 schizo-
phrenia patients and 13 matched controls were
examined for differences in gene expression
using the Affymetrix U133 chip. Analyzing the
39,000 transcripts that were interrogated by
this chip, Davis et al. (2003, ACNP) found that
several genes in the myelin system showed
changes in expression. One of the main expres-
sion differences was with the MOG gene, which
was significantly reduced in the cingulate and
in area 44 of the schizophrenia brains (for
review, see Davis et al., 2003).

The secondary reason for involvement of
MOG in schizophrenia is that MOG is known
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to mediate the function of the complement cas-
cade in the immune system. Furthermore, the
chromosomal location of the MOG gene is on
6p22, close to the region of the loci for the
human leukocyte antigens (HLA) on 6p21,
which further implicates a secondary immune
function of the MOG protein. Both the physi-
cal and the genetic distance between MOG and
the HLA loci are extremely small, especially
considering that the HLA-A Locus is at 0.1 Mb
from MOG. The autoimmune hypothesis of
schizophrenia has been under consideration
for several decades (Cazzullo et al., 1974), and
several studies of HLA region markers have
found a positive association (Wright et al.,
2001). Arelatively large number of genome scan
studies for schizophrenia have found linkage
in this area of 6p22-24 (e.g., Schwab et al., 1995;
Straub et al., 1995). Although the gene for dys-
bindin is also located in the vicinity, and it has
been associated with schizophrenia in genetic
studies (Straub et al., 2002), the relative risk
imparted by this gene is low (1.6) and does not
explain the full effect of the linkage findings
from the genome scans. 

Summarizing the findings outlined in this
section on neurodevelopment genes, brain
structure, and schizophrenia, there are indeed
a large number of candidate genes to consider
for phenotypes of brain structure and function
and the disease symptoms. Candidate genes
can be organized or nested into prioritized sub-
groups for systematic investigation, such as
synaptic, neurotransmitter related, or cogni-
tive. These functionally nested groupings can
be used as more complex constraints for com-
bined data analysis.

Epistasis or Gene–Gene Interactions

Given the evidence that all the genes noted
above can have significant effects, we must
consider how to evaluate the possible pres-
ence of epistasis, i.e., the interaction among
genes (Rothman and Greenland, 1998). We are

interested in whether the observed biological
marker is better predicted by a “combination”
of genotypes of interest at different loci when
they are jointly present in the same subject(s)
rather than when they act independently. In
our current situation, the definition of the phe-
notype is qualitative, being either present or
absent, and the synergistic effect of the two
genes can be measured by estimating the odds
ratio (OR) for the combinations of genotypes
at different polymorphisms in the genes that
we are evaluating (Kleinbaum, 1994). We can
examine the joint effect of gene A and gene B
by considering the genotypes of interest for poly-
morphisms at both genes. If the synergisticeffect
(calculated as the OR of the interaction in a
logistic regression model) is significant, the
next step is determining the value—and its cor-
responding meaning—for the OR that consid-
ers (gene A) × (gene B). If the OR that refers to
the combination of the proposed genotypes has
a value greater than the simple sum of the ORs
of each single-risk factor (i.e., the implicated
genotype for polymorphisms at gene Aand the
implicated genotype for polymorphisms at
gene B), then the gene–gene interaction points
to a multiplicative/epistatic, rather than to an
additive, effect of the two polymorphisms. The
multiplicative nature is evident from the obser-
vation that the OR for the interaction is higher
than the additive effect of the single-risk geno-
types, even at a logarithmic scale as in the
logistic regression model. For a qualitative
phenotype, the case–control association, or
the TDT, must be represented in the form of
a logistic regression (Sham, 1998) to allow for
the interaction to be evaluated. Coding the
genotypes for a given SNP at locus A, with
alleles A and a, and another SNP at locus B,
with alleles B and b, allows us to test differ-
ent transmission hypotheses. For each bial-
lelic SNP, we have three genotypes, say AA,
Aa, and aa or BB, Bb, and bb and we can test
a dominant-by-dominant interaction model,
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constraining AA = Aa = 1 and aa = 0 for locus
A and BB = Bb = 1 and bb = 0 for locus B. To
test for a codominant or a recessive model, we
simply adapt the coding procedure as AA = 1,
Aa = 0.5, and aa = 0 for a codominant hypoth-
esis and AA = 1 and Aa = aa = 0 for a recessive
hypothesis (the same obviously is for locus B).
With this simple coding, we can describe up to
nine different models of synergy (e.g., dominant-
by-dominant, dominant-by-co-dominant,
dominant-by recessive, co-dominant-by dom-
inant, codominant-by-co-dominant, etc.) and
estimate the presence of a specific form of
epistatic interaction (Goodnight, 2000).
Considering the relatively simple occurrence
that each locus (A and B) can have more than
one SNP, whose number depends on the size
of each locus, it is clear that the study of a
gene–gene interaction rapidly escalates to eval-
uate tens if not hundreds of complex tests. 

Recently a novel gene called G72 (on 13q32-
34) has been associated in LD with schizo-
phrenia in two populations (now further
confirmed in at least five additional popula-
tions), with an OR of ±2 (Chumakov et al., 2002).
By following the G72 pathway to refine the can-
didate gene strategy, and examining the gene’s
biochemical partners in yeast, the gene for 
D-aminio acid oxidase (DAAO) (which acts
jointly with G72) was also associated with schiz-
ophrenia in a previously unknown linkage
region (12q21) with an OR of ± 1.8. Then, when
the epistatic (gene–gene) interaction of G72 and
DAAO was examined the OR associated to the
risk of developing schizophrenia jumped to 5.2.

This example points out the complexity of
gene structure, gene–gene interactions, and the
need to study extended haplotypes rather than
single SNPs or even multiple SNPs/haplotypes
restricted to a single gene itself, and the neces-
sity for developing a variety of statistical
approaches to such problems. Hierarchical
analyses, in which biological relationships have
priority, and various nesting procedures based
on biology need to be developed.

Endophenotypes 
and the Combination 
of Genetics and Imaging

Gottesman and Gould (2003) have discussed
the endophenotype concept in neuropsychi-
atric illness. They defined a phenotype as
observable characteristics of an organism that
are the product of genetic and environmental
influences. Endophenotype was defined as
“measurable components unseen by the
unaided eye along the pathway between dis-
ease and distal genotype.” Other terms roughly
synonymous include intermediate phenotype,
biological marker, subclinical trait, and vul-
nerability marker. However, in their article
they distinguished biological markers as bio-
logical characteristics that do not have genetic
underpinnings, whereas endophenotypes
have heritable characteristics, a convention
that we follow, i.e., assuming that the defini-
tion of endophenotype includes a heritable
component.

By this definition, examples of an endophe-
notype in schizophrenia include sensory gating
abnormalities as measured by attenuated pre-
pulse inhibition (e.g., Anokhin et al., 2003); eye
tracking dysfunction as measured by defi-
ciencies in smooth pursuit eye movements (e.g.,
Katsanis et al., 2000), and neurocognitive dys-
function of various types (e.g., Cannon et al.,
2000; Tuulio-Henriksson et al., 2000), all of
which have been shown to have heritable com-
ponents. Gottesman and Gould concluded, “It
stands to reason that more optimally reduced
measures of neuropsychiatric functioning
should be more useful than behavioral ‘macros’
in studies pursuing the biological and genetic
components of psychiatric disorders.” A
working example of this outside the field of
neuropsychiatry can be derived by studies on
genetics of hypertension. In fact, despite the
fact that hypertension is unequivocally a dis-
ease it is a heterogeneous disorder; the clinical
phenotype (i.e., the trait) is easy to measure but
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there is variability in the response to treatment.
Using the amount of Na reabsorption in the
distal tubule after a salt load during 48 h as the
endophenotype, it is possible to easily identify
a more homogeneous form of hypertension
linked to a kidney defect, which allowed the
clear identification of one gene mostly respon-
sible for this particular subform of the disease
(Cusi et al., 1997).

An endophenotype of the Gottesman and
Gould type offers the advantage for psychi-
atric treatment of using a sample that is selected
for a particular phenotype, with higher pene-
trance and more objective diagnosis (Adler
et al., 1999). Such endophenotypes or inter-
mediate phenotypes are more closely linked to
the underlying genetic variation than clinical
symptom clusters that may require a much
higher threshold or combination of factors for
expression. In order for the concept to be max-
imally useful, we extend the endophenotype
concept in this article to include emergent com-
binations of imaging, and other neurophysio-
logical measures with genetic information, and
may well include specific clinical characteris-
tics, to characterize homogeneous clusters of
these measures within the schizophrenic pop-
ulation, leading to greater understanding of
the disease characteristics and improve the
timeliness and efficacy of treatment. The term
carries a particularly applied characteristic, in
that endophenotypes are clusters of phenotypic
and/or genotypic measurements that allow
improved differential diagnosis, improved
predictability of disease progression, or
improved predictability or understanding of
treatment response, side effects, or patho-
physiology. Gottesman’s definition in contrast
to our use would not include any clinical char-
acteristic as part of the cluster constituting an
endophenotype.

Some examples of quantifiable endopheno-
types using linkage analysis in schizophrenic
populations are P50 auditory-evoked potential
gating (Freedman et al., 1997) and hippocampal

N-acetyl asparate levels (Callicott et al., 1998).
These are measures show distinctions between
schizophrenics and controls; in conjunction
with a genetic component they may be poten-
tial endophenotypes, leading to more targeted
treatments. Chromosome 15q14, and specifi-
cally the α-7 nicotinic receptor gene localized
to this region, show linkage to P50 auditory sen-
sory gating deficit in schizophrenia (Freedman
et al., 1997; Xu et al., 2001). Furthermore,
De Luca et al. (2004) have shown the α-7 gene
to be associated with the unusually high preva-
lence of smoking, and heavy smoking, in schiz-
ophrenia (for review of the α-7 nicotinic receptor
literature regarding schizophrenia, see Martin
et al., 2004). These and the others noted above
are each examples of endophenotypes linked
to only a single gene or haplotype; the ability
to extend these measures to include epistatic
interactions is a current research concern.

A practical example combining clinical out-
comes with biological markers is that differ-
ential speed and completeness of clinical
response to conventional antipsychotic drugs
has been related to the interaction between
dopamine metabolism and ventricular volume
abnormalities in the brain (Garver et al., 2000).
Genotypes were not included in this study and
thus the heritability of these biological mark-
ers was not determined, though the combina-
tion of clinical and physiological markers had
predictive value for treatment response. Spinks
et al. (2004) studied the influence of the exonic
polymorphism human opa-containing
(HOPA), an X-chromosome gene involved in
neuronal growth and differentiation, and the
development of schizophrenia. The HOPA12bp

allele appears to protect against the develop-
ment of schizophrenia in these association stud-
ies performed in males; for those developing
schizophrenia, it is also associated with fewer
negative symptoms and better attentional pro-
cessing than schizophrenics without this geno-
type, predicting both clinical course and
cognitive dysfunction. For the phenotype of
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antipsychotic medication response in schizo-
phrenia, Mueller et al. (2003) have evidence
that the SNAP-25 gene is involved both in pre-
diction of treatment response and the side-
effect of weight gain.

Environmental influences are important and
interact with both genes and the displayed phe-
notype. A noteworthy example is the Caspi
et al. (2003) study, in which a group of 400 boys
was followed for 20 yr. Stressful events during
the past 6 yr were measured and compared
with their 5HTT transporter genotypes, study-
ing a specific insertion/deletion polymorphism
in the promoter region of the gene. Neither the
5HTT variants (e.g., the long vs the short poly-
morphism), nor the stress events considered
individually predicted depression; however,
the combination of the two measures predicted
occurrence of depression (Caspi et al., 2003).
This analysis highlights the value of combin-
ing data from seemingly disparate factors such
as environment and genetic variation, and
assaying their interaction. 

Given the imaging phenotypes reviewed
earlier, and the numerous candidate genes
implicated in schizophrenia (see also Harrison
and Weinberger, 2005), the most promising
endophenotypes for differential diagnosis
should integrate both information sources.
Brain imaging usually requires much smaller
samples than clinical symptomatology studies
because of the greater precision, objectivity, and
reliability of imaging measures, that translates
into larger effective size. The combination of
imaging with a candidate gene approach in
case–control studies allows genetic correlations
to be determined with dataset sizes on the order
of 30 subjects. However, evaluating gene–gene
interactions, already an increase in complexity
over single-gene association studies, in com-
bination with imaging studies will require con-
siderably larger populations.

One of the most promising current endophe-
notypes to combine imaging as well as genetics
is the combination of catecholamine-O-

methyl-transferase (COMT) polymorphisms
and working memory activations in neu-
roimaging studies. The catabolic enzyme for
dopamine, COMT, the gene for which is on
22q11.2, has been linked to schizophrenia pre-
viously (Weinberger et al., 2001; Egan et al., 2002;
Egan et al., 2001b). A functional polymorphism
(val108met—a nucleotide substitution resulting
in a valine-for-methionine change in the COMT
protein) results in a fourfold increase in activity
resulting in decreased available dopamine, but
this increase is limited to brain areas that are rel-
atively devoid of the dopamine transporter, such
as the prefrontal cortex. This polymorphism has
also been linked to performance on a working
memory task (Egan et al., 2001a, b) with poor
performance in schizophrenic patients and their
siblings as well as comparison volunteers who
had the valine variation. This valine variation is
the same one found to be transmitted at a higher
rate in at least one form of schizophrenia (for
review, see Weinberger et al., 2001). Interestingly,
these valine variation individuals are less effi-
cient in their activation of the DLPFC as meas-
ured by functional magnetic resonance imaging
(fMRI). Gottesman and Gould (2003), in review-
ing these data, concluded that fMRI analysis of
subjects undergoing working memory tasks may
be a more sensitive endophenotype than purely
neuropsychological measures of working
memory performance.

This example highlights some of the com-
plexities of combining genetic with imaging
data. The brain, unlike many other organs in
the body, comprises numerous and variable
compartments, each containing multiple cell
types and functional subunits which are dif-
ferentially expressed throughout the various
regions of the brain. For example, neurons in
the frontal cortex are relatively devoid of the
dopamine transporters, unlike neurons else-
where, even though dopamine has important
functions in the frontal cortex. This absence
of dopamine transporters has the important
functional consequences noted above when
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combined with COMT alleles that are relatively
unable to metabolize dopamine. In other areas
of the brain, the increased dopamine is
removed from the synapse by the transporter
and thus has little effect on either cognitive
function or neuroimaging results. Thus geno-
types are differentially expressed throughout
the brain and need not be treated as simple
categorical variables.

FDG-PET also has the ability to measure
regional brain metabolic response whereas the
subject is performing a cognitive task. We have
shown that dopamine D1 receptor gene alleles
at the DdeI SNP in the first intron are associ-
ated with clinical response as well as brain
metabolic changes during clozapine treatment
(Potkin et al., 2003b). D3 receptor alleles
(gly9gly) have been shown by our group and
others to be associated with risk of tardive dysk-
inesia (Basile et al., 1999; Lerer et al., 2002).
Interestingly, the gly9gly subjects dramatically
increase their striatal metabolism when treated

with the typical antipsychotic haloperidol,
whereas the ser9ser or gly9ser subjects do not
increase striatal metabolism in response to
haloperidol (see Fig. 1) (Basile et al., 2002;
Potkin et al., 2003). These studies combine
genetics and brain imaging to provide new
information on how genetic risk influences the
production of clinical response to medication
as well as the production of side effects, which
is critical to developing targeted treatments
for schizophrenia.

Statistical Issues 
in Imaging Genetics 

In the above examples, candidate genes are
usually chosen a priori and used as categorical
variables in the analysis of imaging data. Useful
information has come out of this approach in
both healthy individuals and clinical popula-
tions, as demonstrated earlier, as well as in clin-
ical populations such as Alzheimer’s disease
research with apolipoprotein E (APOE) alleles

Fig.1.Combined imaging and genetics data to reveal endophenotypes:(Left panel) The regional glucose meta-
bolic changes following clozapine for schizophrenic subjects with the 2,2 alleles for the DRD1 gene. (Middle
panel) The same changes for the schizophrenic subjects with the 1,2 alleles DRD1. Following clozapine
treatment, the 2,2 allele subjects respond clinically and alter their brain metabolic response, whereas 1,2 sub-
jects do not respond clinically or metabolically to clozapine. (Right panel) The difference between brain
metabolic response in subjects homozygous for the DRD3 glycine allele and those with glycine9serine or
serine9serine alleles.The glycine9glycine DRD3 allele subjects who are at increased risk for tardive dyskinesia
increase their ventral striatal metabolic response following haloperidol, whereas the other subjects (without
the glycine9glycine allele) do not. (Reprinted with permission from Basile et al., 2002; Potkin et al., 2003).
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(e.g., Bookheimer et al., 2000; Small et al., 2000;
Small, 2002). Beyond the well-documented
issues with case–control studies in any genetic
research (e.g., Cardon and Bell, 2001), there are
at least three limitations with this standard
approach: The first and critical issue is that can-
didate genes, by their nature, limit the hypothe-
ses to known genes; they do not facilitate
discovery of essential genetic contributions of
genes whose function are currently unknown.
The second issue is the need for adjustment for
the number of candidate genes explored in
genetic association studies. The third issue
involves the complexity of visualizing both
imaging and genetic data for data analysis.

To avoid the risk of inflating false positives
in genetic association and imaging studies, we
should consider the number of tests performed
and correct accordingly. At present, there is no
general consensus about how to “correct” for
multiple testing in genetic association studies
(Krawczak et al., 2001; Nyholt, 2001) or within
imaging studies (e.g., Marchini and Presanis,
2004). Despite different opinions, all authors
agree that a conservative correction is mean-
ingless in these datasets, and they suggest some
kind of “adjustment” in which tests involve
data that are independent from each other. The
frequently advocated Bonferroni adjustment is
not appropriate (Perneger, 1998) because it
assumes that all null hypotheses are true simul-
taneously and independently, which is rarely
the case in biological studies (e.g., genetic vari-
ation is not necessarily independent, and tem-
poral correlations in dynamic imaging studies
can be significant (Purdon and Weisskoff, 1998).
The Bonferroni and similar corrections reduce
the potential number of false-positive errors,
but with the trade-off of dramatically increas-
ing the number of false-negatives; conse-
quently, truly important differences can be
easily missed. Strategies that involve split sam-
ple or independent sample confirmations mit-
igate the possibility of both false-positives and
false-negatives.

Other methods to correct for multiple test-
ing have been proposed and are reviewed by
Brown and Russell (1997), and Cribbie and
Kaselman (2003) with a specific focus on genetic
associations studies. Similarly in the analysis
of brain imaging data, Nichols and Hayasaka
(2003) and Marchini and Presanis (2004) review
several approaches to the multiple-testing con-
cerns, including nonparametric permutation
tests and posterior probability approaches,
which are being applied with growing success
to imaging studies (e.g., Friston and Penny,
2003; Penny et al., 2003, 2005). The false dis-
covery rate (FDR) procedure, the ratio between
the number of false-positives and the number
of significant features, is an approach that is
currently increasing in popularity. The FDR
emphasizes “positive” findings, introducing a
correction based on the expected relationship
of the sensitivity and sensibility of the test; it
has already been proposed as an ideal correc-
tion for genome-wide genetic association stud-
ies (Benjamini and Hochberg, 1995; Devlin
et al., 2003; Storey and Tibshirani, 2003) and
has been included in fMRI imaging analysis
methods (Genovese et al., 2002). These are
applications of FDR to genetic or imaging stud-
ies individually; the combination of multiple
SNP and brain voxel data will undoubtedly
continue to bring new challenges to drive
developments in analytic methods.

The third problem in the integration of imag-
ing and genetics involves the combination of
such diverse data types in a mathematically valid
yet comprehensible way: both genetic and imag-
ing data have a spatial component, for example,
but the spatial manifolds, in which each is embed-
ded, are fundamentally different. Both data types
are four-dimensional (4D), with internal inter-
actions over time, but they are not represented
as such. Imaging data have an inherent three-
dimensional (3D) structure, such that voxels near
each other in the brain are not independent of
each other, although the visualization is of neces-
sity usually a two-dimensional (2D) projection.
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Unlike in brain images, the 3D nature of chro-
mosomes is not critical to genetic analyses;
genetic data can be represented in 2D space, with
the fundamental data thought of as interacting
points on many one-dimensional lines.
Combining these datasets whereas retaining and
utilizing the spatial and temporal information
to extract the relevant patterns is a current
challenge.

The Role of Data Mining in Analyzing
Combined Imaging–Genetics Data

There has been considerable research activity
by computer scientists in recent years in the area
of data mining (also sometimes referred to as
“knowledge discovery in databases,” and closely
associated with a related research area known
as “machine learning”). Broadly speaking, the
goal of data mining research is to develop algo-
rithms that can automatically search through
data sets to detect patterns that could otherwise
go undetected by manual analysis methods
(Hand et al., 2001; Smyth et al., 2002). This can
be particularly useful in situations in which there
are a very large number of measured variables
and/or there are a very large number of data
points. The interface between data mining and
statistics is by necessity somewhat blurred: many
data mining techniques have statistical ideas at
their core, and there are well-known statistical
techniques (in particular in the areas of
exploratory data analysis and discriminant
analysis) that could be viewed as a type of data
mining (Smyth, 2000; Hastie et al., 2001). Many
of the successful applications of data mining have
occurred in (largely unpublished) commercial
applications such as credit-scoring and e-com-
merce (Berry and Linoff, 2004) in which the very
large number of data points available makes it
possible to reliably fit relatively complex pre-
dictive models for classification and regression
with minimal prior assumptions on the func-
tional forms of these models (e.g., Friedman,
2001; Scholkopf and Smola, 2002). High-dimen-
sional problems, with hundreds or thousands of

variables, are often addressed by techniques such
as tree-based algorithms (Breiman, 2001; Hastie
et al., 2001) that search for relatively small sub-
sets of variables (often with nonlinear interac-
tions) that appear empirically useful for the task
at hand (whether regression, classification, clus-
tering, etc.). These “dimension-reduction” ideas
provide a useful general approach toward com-
bating the problem of “many variables, few sam-
ples,” and although they are generally useful for
high-dimensional problems they do not provide
a universal panacea to the fundamental statisti-
cal limits governing reliable inference from small
samples.

In the area of bioinformatics, data mining
and machine learning methods have been suc-
cessfully applied in succession to problems in
protein and DNA/RNA sequence modeling
(Durbin et al., 1999; Baldi and Brunak, 2001;
Pevzner, 2001), analysis of gene expression
microarray data (Kohane et al., 2003; Baldi and
Hatfield, 2002; Speed, 2003; McLachlan et al.,
2004), and broader problems involving pattern
discovery from genomic data (Wang et al., 1999;
Scholkopf et al., 2004). However, in the context
of the imaging and genetics, the sizes of data
sets that are currently available (in terms of
number of subjects) are relatively low from a
data mining viewpoint. For example, in ana-
lyzing web data it is common to have data from
millions of subjects to analyze (e.g., Cadez et al.,
2003), whereas fMRI studies, for example, are
typically only available for order of 100 indi-
viduals or fewer (even without a genetic com-
ponent). The numbers of subjects in these
studies will increase as projects involving fed-
erated data sets scale up. In the meantime, given
that the numbers of imaging (X), genetic (Y),
and clinical (Z) variables are often greater than
the number of subjects being analyzed, data
mining for such data seems best suited to an
exploratory (rather than a confirmatory) role,
as an aid to direct visualization, suggesting can-
didate hypotheses for consideration and pos-
sible follow-up confirmatory statistical analysis. 
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Clustering is a particularly popular technique
for data mining and exploratory data analysis,
in which an algorithm searches for natural
groupings of individuals or objects (Jain and
Dubes, 1988). Clustering offers the possibility of
automated discovery of subgroups that cannot
be visualized manually in the high-dimensional
combined imaging-genetics space of measure-
ments. Better groupings are those in which the
objects within each group are more similar to
each other in measurement space, than to objects
in other groups. In microarray data analysis, for
example automatic clustering of genes can pro-
vide a useful starting point for detecting groups
of genes whose expression patterns are similar
and whose functional roles may be related—a
commonly applied approach is to search for a
hierarchy of clusters, using Euclidean distance
between expression profiles to merge genes into
clusters in a bottom-up manner (Eisen et al.,
1998; Spellman et al., 1998).

An alternative approach in this context is
probabilistic model-based clustering, which
hypothesizes the existence of a finite mixture
model with K components for modeling the
underlying probability distribution (or den-
sity) of the observed data, i.e., p(X,Y) = Σk
p(X,Y|C = k) where C is a cluster variable. The
imaging data X = [x1, x2, …, ] that would play
a role in these clusters could be of various sorts.
Neuroimaging methods such as fMRI or PET
collect images of the subject’s brain either dur-
ing or following a cognitive task (see e.g., Toga
and Mazziotta, 2000). These images are usu-
ally 3D volumes (made up of 2D images or
“slices”), with 3D volumetric elements or
voxels being the elements in the image over
which measurements are made and statistics
are computed. The analysis results are thus not
a simple summary statistic, but a 3D brain-
shaped arrangement of statistics, one z-score
or t-score or other statistic for each 3D voxel in
the brain image, for each analysis performed.

At its most computationally demanding, X
could be the summary statistic for each voxel

xi in the brain. More realistically, X could be
the summary statistic for predefined regions
in the brain; for example, in a working mem-
ory task the strengths of the cortical activation
in a number of relevant frontal and parietal
regions x1, x2, …., may be represented as the
vector X•X could also include the strength of
the connection between these areas under the
condition of the particular cognitive task, based
on a circuitry analysis such as dynamic causal
modeling (Mechelli et al., 2003) or structural
equation modeling as applied to neuroimag-
ing data (e.g., Kilpatrick and Cahill, 2003). 

The genetic data Y = [y1, y2, …, ] could also
represent several different pieces of informa-
tion. At the lowest and again most computa-
tionally demanding level, Y would be the full
genomic scan for the person, all base-pairs in
order by chromosome. This is more informa-
tion than the current approaches are using. At
its simplest, using SNP data, yi would simply
code a particular SNP type; for example, with
the gene APOE, there are three common alle-
les (coded as 2–4). A person will have two alle-
les, which can be any unordered combination
of the three alleles (2,2; 2,3; 2,4;3,3; 3,4;4,4). If
y1 codes the APOE genotype, it could simply
be coded using 1–6 to indicate which of the
combinations the subject has. Y2 would then
be a similar representation for another gene
such as BDNF or another; y3 similarly; and so
on. A different representation would be a hap-
lotype coding similar to that described in the
haplotype blocking section. Thus y1 would not
indicate a particular allele combination but
would indicate different haplotypes. This is
obviously not the only way to represent these
data; the known functional groupings of genes
are not explicitly represented, for example, and
the best way to incorporate that a priori infor-
mation into the representation is an area for
development. 

Given these datasets, each of the K compo-
nent densities, P(X,Y|C = k) in the mixture
model corresponds to a particular cluster
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(McLachlan and Peel, 2002). Scale and corre-
lation effects can be handled directly, for exam-
ple, modeled by the covariance matrix for each
component in the multivariate Gaussian mix-
ture model. The parameters of this model,
namely the parameters for each of the K com-
ponent densities and the K mixing weights, can
be estimated from the data—in particular, a
general-purpose estimation method such as the
expectation-maximization procedure, is often
used in practice. A feature of the model-based
approach is that it inherits aspects of both sta-
tistical and data mining “thinking”: it is
grounded in a statistical modeling framework,
yet provides a relatively flexible form of model
fitting, consistent with the general data min-
ing philosophy of making relatively few
assumptions about the data before analysis. 

When different data types are present in a
data set, such as the combination of imaging
and genetics data, it can be difficult to define
a suitable distance metric among subjects: how
much weight should the genetic data Y get rel-
ative to the imaging data X for example? How
should replicated data (e.g., multiple images)
be handled? Should the measurements be aver-
aged or should the variability in the replica-
tions be taken into account? The probabilistic
clustering approach provides a starting point
to address some of these issues by allowing the
data analyst to include different data types and
replicated data in a systematic manner.
Different data types, for example, can be mod-
eled by hypothesizing parsimonious but real-
istic conditional independence relations among
multiple data modalities and measurements,
for example, by assuming conditional inde-
pendence of imaging and genetic variables
given cluster membership, p(X,Y|C) = p(X|C)
p(Y|C). There is also no need to define a priori
an explicit distance measure among diverse
measurements sets; instead, the statistical
learning algorithm in effect can estimate an
appropriate implicit distance measure among
objects based on their relative likelihoods

among different cluster assignments (e.g., Lin
et al., 2004). 

Other data mining techniques that are poten-
tially relevant to imaging-genetics data include
the general class of “dependency modeling.”
Broadly speaking, the representational lan-
guage underlying these methods can be
thought of as follows: each measurement vari-
able is represented as a node in a graph, and
edges in the graph (links among nodes) repre-
sent direct dependencies. A data mining algo-
rithm in this context then searches for a sparse
set of links that explain the observed depend-
encies well. For example, given three variables
A, B, and C, if B and C are conditionally inde-
pendent given A, then the ideal directed graph
for this probability model consists of a directed
edge from A to B and another directed edge
from A to C. The ideal model contains no edge
between B and C as they do not directly depend
on each other but are marginally dependent (if
the value of variable A is unknown).

For directed links, there is a well-developed
theory for such models under the name of
directed graphical models or Bayesian net-
works (Lauritzen and Spiegelhalter, 1988; Pearl,
1988). There is an accompanying theoretical
framework and algorithms for learning the
structure of these models from data, in which
search algorithms balance goodness-of-fit and
model complexity (Jordan, 1999). A recent suc-
cess of this approach is in automated learning
of dependency graphs for gene regulation
(Segal et al., 2003), integrating both protein
interaction data and microarray measurements
using a probabilistic modeling framework. This
type of integration of measurements from dif-
ferent sources is somewhat analogous to the
problem of analyzing combined genetics, imag-
ing, and clinical data, and probabilistic mod-
eling techniques are likely to play a useful role
in this context, allowing the linking together
of different information sources using the cal-
culus of probability. The framework of directed
graphical models provides a useful starting

02_Potkin  1/13/06  12:02 PM  Page 39



40 ________________________________________________________________________________Turner et al.

Neuroinformatics_________________________________________________________________ Volume 4, 2006

point for constructing and computing with
complex probabilistic models, with a variety
of extensions to include temporal dependen-
cies (such as dynamic Bayesian networks,
[Smyth et al., 1998; Murphy 2002]) and spatial
information (such as undirected Markov ran-
dom fields, Winkler, 2003).

Closer to the theme of this present article is
the work of Herskovits and colleagues who have
shown how graphical models can be learned
that relate structural properties of brain images
(estimated lesion volumes, X variables) with
clinical function (attention-deficit hyperactivity
disorder, Z variables) (Herskovits and Gerring,
2003; Herskovits et al., 2004). In this work it was
shown that learning a structured graphical
model for p(Z|X), detected nonlinear depend-
encies between X and Z variables that were
undetected by more traditional methods such
as t-tests. The utility of being able to automati-
cally learn such dependencies from data is par-
ticularly appealing when genetics data is added
to the mix, although such studies are still only
on the horizon as imaging-genetics datasets scale
up to appropriate sizes. Another useful feature
of the graphical model approach, as illustrated
in Herskovits and Gerring (2003), is the ability
to separate variables into different groups that
reflect known causal structure and then learn
dependencies that are consistent with this struc-
ture (e.g., from brain structure X to individual
clinical behavior Z, rather than vice versa).

The datasets currently available for imaging-
genetic data analysis tend to be somewhat small
to support the powerful search-based data
mining algorithms that have been developed
in the computer science community in recent
years. However, as mentioned earlier, as more
large-scale studies are performed, and statisti-
cal and algorithmic techniques are improved
to allow better “pooling” of imaging-genetics
data sets collected across different sites and
studies, we can expect increased interest and
utilization of data mining algorithms, as well
the development of new data mining algorithms

that leverage the unique aspects of combined
imaging and genetic data.

Summary

The understanding of schizophrenia has pro-
gressed greatly through the use of neuro-
imaging studies, genetic studies, and their
combination. Numerous physiological dis-
tinctions have been identified between schiz-
ophrenics and controls, and among schizophren-
ics of differing clinical profiles. The integration
of these approaches into clinically meaningful
endophenotypes is the promise of the field of
imaging genetics. Currently, although there is
a wealth of information regarding different
phenotypes and genotypes related to schizo-
phrenia, the choice of treatment for the disease
is driven primarily by the patient’s subjectively
assessed symptoms. The integration of neu-
roimaging tests and genotyping for each indi-
vidual can and should be aimed toward
identifying the most effective treatment, with
the probability of side-effects for that individual
also assessed (see Fig. 2).

To do this, stable and useful endophenotypes
need to be assessed from within large, multi-
modal datasets. The amount and variety of brain
imaging information will continue to expand as
new methods such as magnetoencephalography
(MEG), diffusion tensor imaging (DTI), and
optical imaging become more wide-spread, as
the resolution of imaging techniques improve,
and the type and complexity of image and pattern
analysis and visualization advance. Similarly,
the amount of genetic information (SNP, expan-
sions) will soon exceed one million measures of
variation per individual. There may be as many
as 12 million locations of common variation in
the human genome, although they may
described by as few as 300,000 haplotypes, again
highlighting the promise and complexity of
combining these types of data. Quality assur-
ance, quality control, data provenance, and the
confidentiality of such amounts of information
per subject are challenging. Combining these
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large datasets of different data types compounds
the problem. 

The promise of neuroimaging in enhancing
understanding of schizophrenia and in facili-
tating the development of new treatments has
been hampered by the difficulties in compar-
ing and combining imaging data obtained at
separate centers, which has constrained inves-
tigators from creating the datasets of the size
needed for the datamining methods. Different
magnet strengths, manufactures, acquisition
sequences, and cognitive tasks and paradigms
are important aspects of the inherent com-
plexities. National Institutes of Health (NIH)
is funding several projects to address these
obstacles; the functional imaging research in

schizophrenia testbed Biomedical Informatics
Research Network (BIRN) project (aka FBIRN)
is a transdisciplinary consortium focused on
developing the technical infrastructure for
combining functional MRI data obtained at
multiple sites using diverse imaging equip-
ment, different magnet strengths, and a range
of data acquisition methodologies. Anatomical
and functional calibration methods have been
developed by BIRN to facilitate combining
imaging data across sites and over time. FBIRN
also provides a clinical federated and distrib-
uted database schema, allowing the tracking of
demographic, symptomatic, and neurocogni-
tive information. Databases like these and (brain
imaging database [BRAID] [Letovsky et al.,

Fig. 2. The promise of endophenotypes for improved treatment. Ideally, a patient’s genotype and imaging phe-
notype can be measured as needed, to allow better, individualized predictions of treatment response, both in
control of clinical symptoms (e.g., efficacy and negative symptoms, and cognitive function) and side effects such
as the development of diabetes mellitus, weight gain, and increased risk of suicide.
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1998; Herskovits, 2000]), in conjunction with
those being developed to share medical images
for surgical planning (e.g., Cao et al., 2004),
form the basis for the broader data sharing and
combination that is required for the discovery
of endophenotypes.

Tools for integrating these imaging, genetic,
and clinical datasets are required, as well as the
development of new methods of visualization
that take advantage of the human visual sys-
tem’s ability to scale and integrate data. Better
methods of pattern recognition are clearly
needed. The successful integration of these
methods depends on a robust, flexible, and dis-
tributed database and IT infrastructure. The
transdisciplinary collaborative efforts of neu-
roscientists, computer scientists, genetics, and
clinical investigators are required for the pro-
posed successful integration of these methods
in support of new knowledge discovery.
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