

NA-MIC National Alliance for Medical Image Computing http://na-mic.org

Stochastic Tractography

Analysis of the uncinate fasciculus

Andrew Rausch Psychiatry Neuroimaging Laboratory Brigham & Women's Hospital rauscha@bwh.harvard.edu 。 (617)-525-6118 NA-MIC Tutorial Contest: Summer 2010

Learning Objective

This tutorial will lead you through a Fractional Anisotropy analysis of the uncinate fasciculus to illustrate using the stochastic tractography module in Slicer 3.6

Visualized stochastic cloud of the uncinate fasciculus

To use this tutorial, you should already know how to load images, create ROI labelmaps, and do basic work with diffusion MRI images.

See especially the Visualization tutorial and the Diffusion tutorial by Sonia Pujol:

http://www.slicer.org/slicerWiki/images/6/67/Slicer3Course_DataLoading_3DVisualization_SoniaPujol.pdf http://www.slicer.org/slicerWiki/images/2/20/DiffusionMRITutorial_SFN2009_SPujol.pdf

- This tutorial requires the installation of the Slicer3.6 release and the tutorial dataset. They are available at the following locations:
- Slicer3.6 download page

http://www.slicer.org/pages/Downloads/

• Tutorial dataset: stochastic_tutoral_data.zip

[http://www.na-mic.org/Wiki/images/e/e7/Stochastic_tutorial_data.zip]

Disclaimer: It is the responsibility of the user of Slicer to comply with both the terms of the license and with the applicable laws, regulations, and rules.

National Alliance for Medical Image Computing http://na-mic.org © 2010, ARR

This tutorial was developed on a 64-bit Linux operating system. It has been tested on no other systems at this time.

1.Discussion2.Set up Slicer3.Running stochastic tractography4.Visualizing results5.Analyzing results6.Conclusion

Stochastic tractography finds the probability of connection between a seeding region and another point

This is done by calculating streamline tracts with a small amount of variation introduced at each step. These tracts are then averaged to produce a "stochastic cloud"

Streamline tractography of the uncinate.

Stochastic shows the "probability" of connection, allowing weighted analysis of measures in the cloud.

Streamline shows direct connections between regions, allowing fiber based analysis of measures or analysis of voxels within the tract's path.

Stochastic tractography of the uncinate.

National Alliance for Medical Image Computing http://na-mic.org © 2010, ARR

The Stochastic Tractography module feeds data to python, where it does all its processing. You need to enable this by checking "Enable Slicer Daemon" in Slicer's settings.

٠	10							
				7				
	Input DWI Volume	e Non	e 🗆 📮	1				
	Input BOI Volume (Begion A			īl				
		Non		ī				
	Input ROI Volume (Region B) Non	ie 🗖 📥	Į				
	Input WM Volume	e Non	ie 🖵 🚔	-				
_			1	_				
^	Smoothing			_				
			Enabled 📃					
	Caussian FWHM 1.0.1.0	1.0		٦l				
	20033/01111111 [1.0,1.0	,1.0		1				
٠	Brain Mask						<u> </u>	
			File Edit Vie	ew	Termina	l Hel	lp	
	Lower Brain threshold 400		[1] Done				Slicer3.6-BC3/Slicer3 start scene.mrml	
			1276121587.69		690	INFO	140358946608880 main Launching pipeline server	
	Higher Brain threshold 1000		1276121589.48		476	INFO	140358946608880 main conn_made: client_address=	
			127.0.0.1:467	45	477	1150		
٠	IJK/RAS Switch		12/0121589.48		4//	INFO	140358946608880 main param value. ['STOCHASTTC'	
-			1270121565.46		4//	THLO	140556540008880main_ param vatue. [STOCHASTIC	
			, 1276121589.48		477	INFO	140358946608880 main paramid: dwi	
			1276121589.48		477	INF0	140358946608880main param value: ['01053-dwi-f	
٠	Diffusion Tensor		ilt-Ed']					
-			1276121589.48		4//	INFO	140358946608880 main param 1d: rolA	
			1276121589.48		4//	INFO	140358946608880mainparam_idroiP	
			1276121589.48		478	TNEO	140358946608880 main param value: ['rh.ROTB']	
			1276121589.48		478	TNEO	140358946608880 main param id: smoothEnabled	
			1276121589.48		478	INFO	140358946608880 main param value: ['1']	
			1276121589.48		478	INFO	140358946608880 main param id: stdDev	
			1276121589.48		478	INFO	140358946608880 main param value: 1.2:1.2:1.2	
			1276121589.48		478	INFO	140358946608880 main param id: wmEnabled	
_			1276121589.48		479	INFO	140358946608880 main param_value: ['1']	
			1276121589.48		479	INFO	140358946608880main param id: infWMThres	
	/		1276121589.48		479	INFO	140358946608880main param value: ['250']	
			1276121589.48		479	INFO	140358946608880main param id: supWMThres	
			1276121589.48		4/9	INFO	140358946608880main param value: ['6000']	
	/		12/6121589.48		4/9	LNFO	140358946608880mainparam_1d: 15LJK	
			1270121589.48		479	INFO	140358046608880mainparam_idtons ["1"]	1
			1276121389.48		460	INFO	140358046668880 param_to: tensEnabled	1
		->	1276121589.40		480	TNEO	140358946608880 main paramid bline	1
			1276121309.40		480	TNEO	140358946608880 main param value: [101]	
			1276121589_49		480	TNEO	140358946608880 main paramid faEnabled	1
			1276121589_48		480	TNEO	140358946608880 main param value: [40]	
			1276121589_48		480	TNEO	140358946608880 main param id: traceEnabled	
			1276121589 48		481	TNFO	140358946608880 main param value: ['0']	
			1276121589 48		481	TNFO	140358946608880 main paramid: modeEnabled	1
			1270121505.40		101	21110		4

INFO 140358946608880 __main__param id: stEnable

Go to "View" -> "Application Settings"

- Select "Slicer Settings" then
- Check "Enable Slicer Daemon"

- Now restart Slicer3
- This step only needs to be completed once

National Alliance for Medical Image Computing http://na-mic.org © 2010, ARR

Load the images in the dataset

- DWI: A filtered and eddy current corrected diffusion weighted MRI
- Mask: from Diffusion Tensor
 Estimation module
- ROIA: labelmap slice of uncinate
- ROIB: labelmap slice of uncinate

DWI (baseline shown)

ROI A (shown over baseline)

ROI B (shown over baseline)

It is now time to start Stochastic Tractography.

You will find the module in: Modules -> Diffusion -> Tractography -> Stochastic Tractography

There are a number of inputs and optional commands for the module. In the following slides we will cover which options to choose.

Run Tractography

≜ 10		
	Input DWI Volume None	
	Input ROI Volume (Region A) None	
	Input ROI Volume (Region B) None	
	Input WM Volume None	

Here you pick the DWI image to use as well as the seeding and filtering ROIs, and a white matter volume to mask the tensor volume before tractography.

IO tab:

- Input DWI Volume: DWI.nhdr
- Input ROI Volume (Region A): ROIA.nhdr
- Input ROI Volume (Region B): ROIB.nhdr
- Input WM Volume: mask.nhdr

 Smoothing 		
		Enabled 📃
	Gaussian FWHM 1.0,1.0,1.0	

Here you will decide how to smooth the DWI image before estimating tensors. This will help to remove noise and improve the tracking algorithm.

Smoothing tab:

- Enabled: check
- -Gaussian FWHM: "1.2,1.2,1.2"

🔶 Brain Mask		
		Enabled 📃
	Lower Brain threshold 400	-
	Higher Brain threshold 1000	•

Here you will decide threshold values for the brain mask, if you are using a B0 baseline image to do the masking instead of a supplied WM Volume.

Brain Mask tab:

- Enabled: do not check.
- Lower Brain threshold: N/A
- Higher Brain Threshold: N/A

IJK/RAS Switch	
	IJK Based 🗹

Here you supply whether your imaging is based on IJK coordinates or RAS.

IJK/RAS switch tab: – Enabled: check

 Diffusion Tensor 	
	Enabled 🖉
	FA 🗹
	TRACE 📃
	MODE

Here you choose which diffusion measures you would like Slicer to calculate as it performs tractography

Diffusion Tensor tab:

- Enabled: check
- -FA: check
- -TRACE: do not check
- MODE: do not check

Run Tractography

 Tractography 		
	Enabled	•
Total tracts	500	Þ
Maximum tract length	200	Þ
Step size(mm)	0.8	Þ
	Use spacing [
Sto	opping criteria [
FA	0	Þ
Use	basic method	~

Tractography tab:

- Enabled: check
- Total Tracts: 500
- Maximum tract length: 200
- Step Size (mm): 0.8
- Use spacing: do not check

Here you set the parameters of stochastic tractography, total tracts means seed tracts per voxel, Max tract length cuts off fibers longer than value, step size is distance between tensor recalculation. We don't use spacing or stopping criteria, and "basic method" refers to using the Friman algorithm for stochastic tractography.

- Stopping criteria: do not check
- FA: N/A
- Use basic method: check

Run Tractography

٠	Connectivity Map							
	Computation Mode 📄 binary 🔳 cumulative 📄 weighted							
	Length Based 📃							
	Length Class 🔲 small 🔲 medium 🔳 large							
	Threshold 0.1							
	Tract offset 0							
	Use spherical ROI vicinity 📃							
	Vicinity 0							

Connectivity Map tab:

- Computation Mode: cumulative
- Length Based: N/A
- Length Class: N/A
- Threshold: N/A
- Tract offset: N/A

Here you set parameters for the creation of the connectivity map. Cumulative adds each tract passing though a voxel, length based removes tracts based on their size category, threshold sets a minimum probability threshold for showing, tract offset enlarges the target ROI, Use Spherical ROI vicinity creates a spherical target ROI, with size set by Vicinity.

- Use spherical ROI vicinity: N/A
- Vicinity: N/A

٠	automatic Server Initialisation
	Enabled 🗹

Here you enable the automatic start of the python server that does the processing.

Automatic Server Initialisation tab: – Enabled: check

Hit "Apply" to begin tractography

A dialog prompting you to "allow incoming connections?" will appear. Select OK.

National Alliance for Medical Image Computing http://na-mic.org © 2010, ARR

Run Tractography

Data will now be sent to the python program, and you can watch the progress in the command line terminal.

Completing the program takes a long time – on a 2.3GHz computer with 8GB RAM it runs for ~24 hrs.

🔻 Te	ermina	al 👘					>
File	Edit	View	Termina	l He	p		A.
[1]	Done	9			Slicer3.	6-RC3/Sl	icer3 start_scene.mrml
12761	121587	. 69	690	INF0	140358946608880	main	Launching pipeline server
12761	121589	. 48	476	INF0	140358946608880	main	conn_made: client_address=
127.0	0.0.1:4	46745					
12761	121589	. 48	477	INF0	140358946608880	main	param id: pipeline
12761	121589	. 48	477	INF0	140358946608880	main	param value: ['STOCHASTIC'
]							
12761	121589	. 48	477	INF0	140358946608880	main	param id: dwi
12761	21589	. 48	477	INF0	140358946608880	main	param value: ['01053-dwi-f
ilt-E	_d ']						
12761	121589	. 48	477	INF0	140358946608880	main	paramid: rolA
12761	121589	. 48	477	INFO	140358946608880	main	param value: ['rh-ROIA']
12761	21589	. 48	478	LNF0	140358946608880	main	param 1d: rolB
12761	121589	. 48	478	INF0	140358946608880	main	param value: ['rh-ROIB']
12761	121589	. 48	478	INF0	140358946608880	main	param id: smoothEnabled
12761	121589	. 48	478	INF0	140358946608880	main	param value: ['1']
12761	121589	. 48	478	INFO	140358946608880	main	param id: stdDev
12761	121589	. 48	478	INF0	140358946608880	main	param value: 1.2:1.2:1.2
12761	121589	. 48	478	INFO	140358946608880	main	param 1d: WmEnabled
12761	121589	. 48	479	INFO	140358946608880	main	param value: ['I']
12761	121589	. 48	479	INFO	140358946608880	main	param id: infWMThres
12761	121589	. 48	479	INFO	140358946608880	main	param value: [250]
12761	121589	. 48	479	INFO	140358946608880	main	param id: supWMThres
12/61	121589	. 48	479	INF0	140358946608880	main	param value: ['6000']
12/61	121589	. 48	479	INF0	140358946608880	main	param 10: ISLJK
12/61	121589	. 48	479	INF0	140358946608880	main	param Value: ['1']
12/61	121589	. 48	480	INF0	140358946608880	main	param 10: tensEnabled
12761	121589	. 48	480	INF0	140358946608880	main	param Value: ['0']
12761	121589	. 48	480	INF0	140358946608880	main	param 10: bline
12761	121589	. 48	480	INF0	140358946608880	main	param value: ['0']
12761	121589	48	480	INF0	140358940008880	main	param 10: TaEnabled
12761	121589	.48	480	INFO	140358946608880	main	param value: ['0']
12761	121589	.48	480	INFO	140358946608880	main	param IO: traceEnabled
12761	121589	40	401	INFO	140356946608880	main	param value: ['0']
12761	121289	40	401	TNEO	140356946608880	main	param in in model abled
12761	121589	48	461	INF0	140358940008880	main	param value: ['0']
12761	121569	. 4 0 40	461	TNEO	140358940008880	main	param 10: StEnabled
12/01	IZ 1589	. 48	48 I	TNF0	140358946608880	main	param value: ['I']

You will know the program has finished when the results appear in the scene. You can see by going to "Module" -> "Data."

Smooth

 If you enabled smoothing, this volume shows the results on a B0-baseline image.

Brain

 This image shows the mask used. If you selected a WM Volume, this is it, if you set threshold values in the brain mask tab, this is the resulting brain mask.

Tensor

 This is a tensor volume, estimated from a smoothed version of the DWI you provided. Here it is represented with a color by orientation map.

FA

 This is fractional anisotropy volume, calculated from the tensor volume, above.

cmFA

 This is a normalized connectivity map showing the probability of a voxel's connection to region A.

cmFB

 This is a normalized connectivity map showing the probability of a voxel's connection to region B.

cmFAandB

 This is a normalized connectivity map showing the intersection of the cmFA and cmFB maps.

cmFAorB

 This is a normalized connectivity map showing the union of the cmFA and cmFB maps.

An easy way to visualize the stochastic cloud is through the "Volume Rendering" module – this will create a 3D model where opacity values of the cloud are assigned based on the probability. Higher probability means a denser cloud.

Under "Source" select "cmFAandB_*somenumber"* "Scenario," "ROI," and "Property" will all automatically populate.

			Background V	Volume	×
▲ Inputs			Source:	cmFAandB_1276292362	
Monitor Scene Loading	Event 💌		Property:	vtkMRMLVolumePropertyNode1	
Scenario:			Presets:	None	
ROI:			Foreground \	/olume	••••
Background Volume —		×_	Labelmap Vol	ume	
Source:	None				
Property:	None				
Presets:	None				
Foreground Volume —)	
Labelmap Volume					
 Rendering 					

Inputs

Scenario:

ROI:

Monitor Scene Loading Event

-

vtkMRMLVolumeRenderingParametersNode1

vtkMRMLROINode1

•

-

The 3D model will appear in the 3D viewing window. From here you can adjust the background images shown as described in the basic tutorial.

National Alliance for Medical Image Computing http://na-mic.org © 2010, ARR

As an example for the analysis of stochastic tractography results, we will count the mean FA covered by the tracts.

We will first find all tracts with a greater than 10% chance of connection.

Then we will weight the FA map by the probability of connection

Finally, we will find the mean FA by use of the Label Statistics module.

Threshold:

- Select cmFAandB in "Background" of one slice window
- Go to "Modules" -> "Editor"
- A window asking for your label map selection will appear. Hit "OK"
- Select the "Threshold" button
- Change the threshold to 0.1-1
- Hit "Apply"
- Every voxel in cmFAandB that was above 0.1 should now be colored in on the labelmap, cmFAandB_#####-label

僌	Sagittal	Select the background			
Ó,	cm FAand B_1276292362-label	cmFAandB_1276292362		-	
ବ	ŵ.		55	30	

To create a weighted FA volume for analysis,

go to:

```
"Modules" -> "Filtering" -> "Arithmetic" ->
"Multiply images"
```

IO Tab:

Input Volume 1: fa Input Volume 2: cmFAandB Output Volume: Create New Volume Then, under Output Volume, select Rename and rename the volume "FA_multiplied"

Controls Tab:

Interpolation order: 1

Hit Apply

	Parameter set _s 🔤 🛓
	Status Idle
▲ 10	
	Input Volume 1 f.2
	Input Volume 2 c2 📰 🛋
	Output Volume
▲ Controls	
	Interpolation order 📄 0 🔳 1 📃 2 🔲 3
Default	Cancel
	Execute the module

Multiply Images

To get results, we will go to: "Modules" -> "Quantification" -> "Label Statistics"

Input Grayscale Volume: FA_multiplied Input Labelmap: cmFAandB_#####-label

Hit Apply.

The results will appear in the spreadsheet below. Scroll to the right to see the average and standard deviation for FA under label 1 – all the voxels with a probability of over 0.1 You can save the results to a text document for further analysis with "Save to File"

↑ Label Statistics	
	Input Grayscale Volume: FA_multiplied 🔤 属
	Input Labelmap: cmFAand2-label 🔤 🚔

mm^3)	Min	Max	Mean	StdDev	
264873	0.000000	0.053517	0.000005	0.000268	
456	0.004396	0.363702	0.064012	0.050340	
					\forall
\triangleleft					1

We have now seen the complete process of running stochastic tractography from setting up Slicer to running stochastic tractography, to visualizing the results, and finally analyzing the outputs.

Acknowledgments

National Alliance for Medical Image Computing NIH U54EB005149

Psychiatry Neuroimaging Laboratory of Brigham and Women's Hospital

Julien von Siebenthal for developing this module Doug Terry for writing an earlier version of this tutorial