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ABSTRACT

Work in progress towards modeling shape statistics of multi-

object complexes is presented. Constraints defined by the set

of objects such as a compact representation of object shape

relationships and correlation of shape changes might have ad-

vantages for automatic segmentation and group discrimina-

tion. We present a concept for statistical multi-object mod-

eling and discuss the major challenges which are a reduction

to a small set of descriptive features, calculation of mean and

variability via curved statistics, the choice of aligning sets of

multiple objects, and the problem of describing the statistics

of object pose and object shape and their interrelationship.

Shape modeling and analysis is demonstrated with an appli-

cation to a longitudinal autism study, with shape modeling of

sets of 10 subcortical structures in a population of 20 subjects.

1. INTRODUCTION

Statistical shape modeling is concerned with the construction

of a compact and stable description of the population mean

and variability. A fundamental difficulty is the high dimen-

sionality of the set of features with a relatively small sam-

ple size, typically in the range of 20 to 50 in neuroimaging

studies. This problem is even more evident for modeling

sets of multiple objects, for example the set of subcortical

brain structures. Statistical modeling of multi-object com-

plexes with their inherent correlations has significant advan-

tages for deformable-model segmentation, as nicely demon-

strated by Tsai et al. [1] and by Yang et al. [2]. The joint mod-

eling of object shapes defines constraints that significantly

help to stabilize the segmentation process. Whereas these two

papers describe statistical object modeling by level-sets, we

propose explicit shape modeling with sampled medial mesh

representations. We further discuss the use of curved statistics
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with modeling of major modes of deformations via principle

geodesic analysis (PGA), a nonlinear extension of PCA.

Clinical applications favor a statistical shape modeling

of multi-object complexes rather than shape analysis of sin-

gle anatomical structures represented out of their embedding

complex. Neuroimaging studies of mental illness and neu-

rolocal disease, for example, are interested in describing group

differences and change due to neurodevelopment or neurode-

generation, processes that most likely affect multiple struc-

tures rather than single anatomical objects. A description of

the change of the set of objects might help to explain under-

lying neurobiological processes affecting brain circuits.

This paper summarizes work in progress towards an effi-

cient and compact modeling of sets of objects. We choose a

sampled medial representation (M-rep) and a statistical frame-

work based on Riemannian metrics. Driving application is

a neuroimaging study where sets of anatomical objects have

been segmented using highly reliable user-supervised tools.

2. METHODOLOGY

This research is driven by the challenge to describe the shape

statistics of a set of 3-D objects. Whereas analysis of single

shapes is well advanced and has been described extensively

using a variety of shape parametrization techniques, exten-

sion to multi-object complexes still represent significant chal-

lenges. Although it might be straightforward to assume that

the shape of abutting objects embedded in volumetric images

are strongly correlated, the research community does not yet

have access to tools for statistical modeling and analysis of

sets of objects.

2.1 Statistics of embedded multi-object shape models:
Construction of atlases is a key procedure in population-

based medical image analysis. Problems of blurring and even-

tual bias through the choice of a tempalte can be overcome by

nonlinear processing via large deformation registration and

population-based simultaneous nonlinear averaging of sets of

images [3, 4]. Figure 1 top illustrates the construction of an

atlas of a population of 14 3-D MRI images of pediatric sub-

jects at age two using the method developed by Josi et al.

Sets of user-guided segmentations of subcortical structures

are available for each pediatric 3D MRI. The set of nonlinear
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registrations resulting from unbiased atlas building can thus

be applied to the segmented objects to construct a non-linear

multi-object average. In our prelimary test, we chose four

populations with a total of 20 cases (autistic and healthy sub-

jects at ages of 2 and 4 years). Sets of transformed objects are

integrated, and the mean level set was defined as the average

object (see Fig. 1 bottom). Please note that homology across

the sets of objects is defined via the nonlinear deformation

maps, linking the atlas uniquely to each subject. A compar-

ison between nonlinear and linear multi-object averaging is

discussed in Xu et al. [5].

Fig. 1. Unbiased atlas building (top) and calculation of the

mean multi-object model (bottom) by applying the set of non-

linear transformations to the segmented brain objects. Qual-

itatively, the shape and mutual relationship of the structures

are preserved in the mean multi-object complex.

2.2 Estimating variability of multi-object complexes:
In linear space, variability of parametrized objects can be

described by principle component analysis (PCA) of spherical

harmonics [6] or point distribution models (PDM) [7]. The

point to point correspondence established via object and pa-

rameter space alignment in the spherical harmonic concept or

minimum description length optimization in the PDM mod-

els guarantees a diffeomorphic mapping. However, the lin-

ear principal component analysis (PCA) cannot describe ob-

ject rotations and the modeling cannot be extended to model

points and normals, e.g. Extension to non-linear modeling is

achieved by principle geodesic analysis (PGA), developed by

Fletcher et al. [8]. PGA extends linear PCA into nonlinear

space using “curved statistics” and is a natural generalization

of PCA for describing the variability of geometric data that

are parametrized as curved manifolds. To recall, the intrinsic

mean of a collection of points x1, · · · , xN on a Riemannian

manifold M is the Fréchet mean µ = argmin
∑N

i=1 d(x, xi)2,

where d(., .) denotes Riemannian distance on M . Whereas

PCA in �3 generates linear subspaces that maximize the vari-

ance of projected data, geodesic manifolds are images of lin-

ear subspaces under the exponential map and are defined as

the manifolds that maximize projected variance. Principle

geodesics can be found by a recursive gradient descent. In

practice, an approximation of the true solution can be calcu-

lated by the log map and a linear PCA in the tangent space

of the mean (please see [9] for details). Important is the fact

that PGA is not limited to linear statistics of surface points

but can be extended to shape parametrization schemes that

include point locations, length parameters and angles.

2.3 Object representation by a medial mesh:
Medial representations represent an alternative to parame-

trization of 3-D objects via surfaces. Medial axis representa-

tions incorporate the notion of symmetry axis or manifolds,

where the representation is decomposed into the shape and

structure of the skeletal sheet but also the width function as a

local attribute. Changes in terms of local translation, bending

and widening can be more naturally expressed by medial than

by surface representations. Pizer et al. [10, 11] developed

an object representation by a mesh of medial atoms. Each

atom is characterized as a tuple with position, radius, and

the normal vectors to the boundary: m = {x, r,n0,n1} ∈
M, with M = �

3 × �
+ × S2 × S2. The object surface can

be interpolated from endpoints of the sets of medial atoms,

but this representation also allows a continous interpolation

of the whole object interior and a rim exterior to the object

boundary. Furthermore, unlike many surface representation

schemes, this representation encodes not only sample points

at the boundary but also normals to the boundary. Since the

parameter vector of medial atoms includes position, length

and angle (between normals), mean and variability of a popu-

lation of object shapes is calculated via the Fréchet mean and

PGA framework as discussed before.

2.4 Modeling of sets of objects with M-reps:
This paragraph summarizes the sequence of steps for build-

ing statistical shape models, for shape parametrization of the

set of multiple objects, and for statistical analysis of groups

of objects. Details of the various procedures are found in as-

sociated papers and PhD theses.

Segmentation of anatomical objects: Anatomical struc-

tures of interest, including left and right hippocampus, amyg-

dala, putamen, caudate, pallied globe and lateral ventricles,

have been segmented by trained experts using semi-automated

procedures. Most structures were segmented with our ITK-

SNAP tool, which includes implicit level-set evolution and

manual editing functions (free download at www.ia.unc.edu/dev).

Our experts went through an extensive training, which is re-

flected by a very high intra- and inter-reliability 1.

Statistical shape modeling: The segmented objects are

represented as binary voxel objects (see Fig. 1). The lateral

ventricles had to be excluded due to topology differences. We

have applied our shape processing pipeline which includes

parametrization by spherical harmonic representations [12],

point distribution modeling (PDM) with homology obtained

via subdivision sampling, object pose alignment, and align-

ment of surface parametrizations via the ellipsoid of the first

harmonics[7, 13]. We then used the modeling scheme devel-

1See http://www.psychiatry.unc.edu/autismresearch/mri/roiprotocols.htm)

for a detailed description of protocols and reliability results.
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oped by Stner et al. [14] to construct sampled medial models

from populations of objects. An explicit error term ε defines

the maximum distance of each object to the model, and the

same error term is used to determine the minimum sampling

of each medial mesh model. As a result, the five left and

right subcortical structures (hippocampus, amygdala, puta-

men, pallied globe, caudate) are modeled as compact medial

mesh structures (see Fig. 2).

Fig. 2. Multi-object shape parametrization with M-rep’s:

Top: Binary voxel objects (left) and overlay of parametrized

surface (right). Bottom: Mesh of medial atoms (left), implied

surface mesh (middle) and implied solid surface (right).

M-rep shape parametrization based on deformable model:
The M-rep models are deformed into each anatomical object

using the “Binary Pablo” tool developed by Pizer et al.[11].

Driven by a local image match function at object boundaries,

M-rep models are deformed to optimally fit the binary voxel

segmentations. This process is applied individually to each of

the 10 anatomical object in each of the 20 image datasets.

3. RESULTS

3.1 Motivation and clinical data: Driving clinical problem

is the need for a joint analysis of the set of subcortical struc-

tures. There is strong evidence that the morphology and size

of anatomical shapes might show a strong correlation between

objects that are part of a circuit or share common functional-

ity. The image data used in this paper is taken from an ongo-

ing clinical pediatric autism study. This study includes autis-

tic subjects (AUT) and matched typically developing healthy

controls (TYP) with baseline at age 2 and follow-up at age

4. Through this longitudinal design, we can not only study

cross-sectional differences between groups but also growth

and even group differences between growth patterns. For the

preliminary analysis shown here, we have selected 5 subjects

each from the TYP and AUT groups. For eight of these sub-

jects, we had longitudinal data with successful scans at 2 and

4 years of age.

3.2 Principle Geodesic Analysis: We applied the princi-

ple geodesic analysis method to the whole set of objects and

combined all the subject groups, which ensures projection

into the same geometric domain for each subject. Whereas

the analysis of single shapes usually follows the typical se-

quence of linear alignment, correcting for individual object

pose and analysis of the residual shape change, a processing

of sets of objects might require an extended concept. The in-

dividual objects within object complexes can have different

relative positions, e.g. they can slide against each other or

even show relative rotation. Current research is addressing

the questions of aligning sets of objecs and separating shape

changes from pose differences.

In our preliminary experiment, the sets of objects are aligned

by a global process which is similar to Procrustes fit, but ex-

tended to accomodate the atom mesh representation of M-

reps. This global alignment includes global translation, rota-

tion and scaling in the three spatial directions. PGA is applied

to the aligned sets of objects and results in the mean and the

major modes of variations (see Fig. 3).

Fig. 3. Eigenmodes of deformation by principle geodesic

analysis (PGA). The top images show the first eigenmode

with minus 3 stdev, mean and plus 3 stdev for sagittal and

coronal views. Bottom: Subject groups projected into the

space of the first two PGA eigenmodes.

3.3 Dimensionality Reduction: PGA performs a com-

pression of the multi-object shape variability to a small set of

major eigenmodes of deformation. We assume that the first

few modes describes most of the shape variability whereas the

reminder might mostly represent individual noise. The qual-

ity of this compression can be evaluated with the criteria com-

pactness, sensitivity and specificity as discussed in [14]. As a

preliminary test, we followed the standard procedure of pro-

jecting the multi-object complexes into the space of the eigen-

modes: mj = m + Pbj , where bj = PT (mj − m). The
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columns of P represent the eigenvectors and the vectors bj ,

which are weights in eigenvector space, describe the deviation

of individual shapes mj from the mean shape. The weight

vector represents a descriptor for each multi-object complex.

Figure 3 bottom illustrates a projection of the 4 groups (con-

trols and autistic subjects at age 2 and 4) into the space of the

first two eigenmodes. Although the plot indicates a possible

separation between the TYP and AUT groups characterized

by + and ◦, it would be premature to draw any conclusions.

PGA, similarly to PCA, is selecting a subspace based on max-

imum common variability but not maximum separation. An

extension of independent component analysis (ICA) to curved

space or supervised training of a subspace of maximum sepa-

ration will be explored in our future research.

4. DISCUSSION

We have discussed work in progress towards extending sta-

tistical analysis of anatomical shape from single structures to

multi-object complexes. In regard to the driving applications

in neuroimaging, a joint analysis of size, shape and pose of

objects and their interrelationships seems superior than single

object analysis. This might answer questions about correla-

tion among objects, for example objects that are part of brain

circuits or are known to be functionally connected. Key is-

sue addressed in this paper are the extraction of a small set of

key features representing the set of objects and calculation of

mean and variability via Riemannian metric. The joint anal-

ysis of multiple objects even amplifies the fundamental prob-

lem of small sample size and high dimensionality of features.

Important open issues remain and need to be addressed

not only by our group but by the international research com-

munity. The study of object pose, interrelationship between

abutting objects, shape changes, and correlation of changes

of shape and pose within sets of objects offers challenging

but exciting research projects. The relationship between unbi-

ased volumetric atlas building and statistical shape modeling

requires further analysis. Whereas the former assumes and

maintains a diffeomorphism, it is known that sets of anatom-

ical objects might not be fully described by diffeomorphic

transformation to an atlas, for example if objects slide against

each other. In regard to the M-rep object parametrization as

used here, we still need to demonstrate the quality and sta-

bility of correspondence and the robustness, sensitivity and

specificity of PGA-based compression of features. Applica-

tions in neuroimaging further require hypothesis testing schemes

that will have to combine shape features with clinical vari-

ables, and which have to properly address the problems of

nonlinear modeling and multiple comparison testing. Encour-

aging progress is shown by recent work of Terriberry et al. [15].
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