

NA-MIC National Alliance for Medical Image Computing http://www.na-mic.org

# Non-rigid MR-CT Image Registration

Atsushi Yamada, Dominik S. Meier and Nobuhiko Hata

Brigham and Women's Hospital

ayamada@bwh.harvard.edu

617-963-4336

NA-MIC Tutorial Contest: Summer 2011



- This tutorial demonstrates how to perform MR-CT and CT-CT non rigid registrations.
- The case study is CT-guided liver tumor cryoablation

As shown in this figure, non-rigid registration can enhance visualization of tumor margin and location.





This tutorial requires the installation of the **Slicer3.6 release** from source files. It is available at the following locations:

### Slicer3.6 Build Instruction page

http://www.slicer.org/slicerWiki/index.php/Slicer3:Build\_Instructions

- 1. After building Slicer3.6, command "make edit\_cache" at "[install folder]/ Slicer3.6-build/Modules".
- 2. Select "ON" of "BUILD BrainsFitIGT" on ccmake screen editor.



- 3. Press "c" then press "g" to generate new CMakeLists.txt.
- 4. After command "make", you can use BrainsFitIGT module.



### This tutorial website is at:

http://wiki.na-mic.org/Wiki/index.php/Non-rigid\_MR-CT\_Image\_Registration

### This tutorial dataset is available at:

http://www.na-mic.org/Wiki/images/4/47/Nonrigid\_MR\_CT\_Image\_RegistrationTutorialData\_TutorialContestSummer2011. tar.gz



 This tutorial was developed and tested on an Intel MacBook Pro (2.3 GHz Core i7, 4GB).



- Registration in CT-guided liver tumor cryoablation: clinical signification
- Strategy Overview
- MR-CT non-rigid registration
- CT-CT non-rigid registration
- MR-CT registration by using given Bspline transformation matrix



CT imaging can be used to plan the interventional approach to facilitate the safe placement of the ablation applicators in the tumor. However, tumor is invisible or poor visible

Contrast enhanced CT or MRI Tumor margins and surround structure can be depicted

Liver position, shape and structures may be differ significantly between two exams.



Cryoprobe



MRI \ tumor Non-rigid registration is desirable to compensate for liver deformation caused by patient positioning, respiratory motion and interventional manipulation.



Non-rigid registration

**Tumor and Cryoprobe** 

National Alliance for Medical Image Computing http://www.na-mic.org

# Registration Between MR and CT Images

In CT-guided cryoablation, there are three different registration tasks as follows. These three tasks will be performed in this tutorial.





#### • To accomplish each task, the plan will be as

| STEP:                  | Α                   | B                                                           | С                                                                    | D                                     |
|------------------------|---------------------|-------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|
| Process:               | Masking             | Contrast<br>Enhancement                                     | Non-rigid Registration                                               | Bspline Waping                        |
| Modules:               | Edit                | N4ITK MR Bias<br>Correction                                 | BRAINSFitIGT                                                         | BRAINS<br>Resample                    |
| Task Input:            | t2ax.nrrd           | t2ax.nrrd<br>t2ax-label.nrrd                                | t2ax-N4.nrrd t2ax-label.nrrd<br>CT-plan.nrrd CT-plan-label.nrrd      |                                       |
| (') <sub>Output:</sub> | t2ax-label.nrrd     | t2ax-N4.nrrd                                                | t2ax-REG.nrrd T1.tfm                                                 |                                       |
| Task Input:            | CT-plan.nrrd        |                                                             | CT-plan.nrrd CT-plan-label.nrrd<br>CT-intra.nrrd CT-intra-label.nrrd |                                       |
| Output:                | CT-plan-label.nrrd  |                                                             | CT-plan-REG.nrrd T2.tfm                                              |                                       |
| Task Input:            | CT-intra.nrrd       | * Tutorial dataset * Mask data<br>* Contrast enhanced image |                                                                      | t2ax-REG.nrrd T2.tfm<br>CT-intra.nrrd |
| Output:                | CT-intra-label.nrrd | * Deformed<br>* Bspline tra                                 | image<br>ansformation matrix                                         | MR-CT-intra.nrrd                      |



Each slide has some information, that is, **task number**, **step**, **input and output** as follows.





# (1) STEP:A Mask of MR Image

### **Objective:**

To make a mask file (t2ax-label.nrrd) which decides a region of non-rigid registration



#### Input: t2ax.nrrd

1. Click on the "Add Volume" button

| 0       | 0     |          |         |          |          |
|---------|-------|----------|---------|----------|----------|
| File    | Edit  | View     | Window  | Help     | Feedback |
| Load S  | Scene |          | Ctrl-O  | -        |          |
| Import  | Scene | e        |         |          |          |
| Downl   | oad S | ample Da | ata y   |          |          |
| Add Da  | ata   |          | Ctrl-A  |          |          |
| Add V   | olume |          |         |          |          |
| Add Tr  | ansfo | rm       |         | <u> </u> |          |
| Save    |       |          | Ctrl-S  |          |          |
| Close : | Scene |          | Ctrl-VV |          |          |
| E×it    |       |          |         |          | axt2     |

- 2. Select "t2ax.nrrd" from the tutorial dataset.
- 3. Check "Centered"
- 4. Click "Apply"





#### To decide a non-rigid registration area, the liver will be masked



National Alliance for Medical Image Computing http://www.na-mic.org



**Output: t2ax-label.nrrd (made automatically when Editor workes)** 

- 1. Go to the "Editor" module
- 2. Click "Apply" on the small window about Color table

| 0 0                                       | X 3D Slicer Version 3.6.3 1.0                                                                                                                                |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Create a me<br>New volume<br>Select the c | rge label map for selected master volume Output Image Volume.<br>will be Output Image Volume-label.<br>olor table node will be used for segmentation labels. |  |  |
| Color Table:                              | GenericAnatomyColors 🔤 🛋                                                                                                                                     |  |  |
| Cancel                                    |                                                                                                                                                              |  |  |

3. Select "Draw" button of the module pane to segment liver with label 1



4. Select "Show label volume outline" to confirm the segmented area easily







1. Draw the line by freehand with left click of mouse around the liver



2. Draw the line continuously around the liver



3. Double click the right button of the mouse near the start point for closing the line

#### Tips!

If the line is not good, delete the line by new line surrounding it with label 0



National Alliance for Medical Image Computing http://www.na-mic.org



4. Make mask for each slice image which shows liver and check the mask by using other planes





# (1) STEP:B Make Contrast Enhanced MRI

### **Objective:**

To make a contrast enhanced MR image (t2ax-N4.nrrd) because MR image don't have an uniform contrast



To obtain contrast enhanced MRI, "N4ITK MR Bias Correction" module is introduced.

 Go to the "N41ITK MR Bias Correction" module from "Filtering" category of module list



National Alliance for Medical Image Computing http://www.na-mic.org



- Parameters: Input image = t2ax, Mask image = t2ax-label, Output volume = create new volume and name it "t2ax-N4"
- 3. Click "Apply"
- 4. Save the t2ax-N4.nrrd and t2axlabel.nrrd in the working directory
- 5. Close Slicer3

| <ul> <li>N4ITK MRI Bias Correction</li> </ul> |
|-----------------------------------------------|
| Parameter set 📊 🚍 🛋                           |
| Status Idi                                    |
| <b>▲</b> IO                                   |
| Input Image None 🔤 🚔                          |
| 2 Mask Image None                             |
| Output Volume None 🔤 🚔                        |
| Output bias field image None 🔤 💂              |
| ▲ N4 Parameters                               |
| Number of iterations 150,100,50               |
| Convergence threshold 0.0001                  |
| BSpline grid resolution 1,1,1                 |
| Spline distance 0                             |
| Shrink factor 4                               |
| <ul> <li>Advanced N4 Parameters</li> </ul>    |
| Default Cancel 3 Apply                        |



# (2) STEP:A Mask of Planning-CT Image

### **Objective:**

To make a mask file (CT-plan-label.nrrd) which decides a region of non-rigid registration



- 1. Operate **STEP: A** for planning-CT image. Load "**CT-plan.nrrd**" from the dataset. The label data will be "**CT-plan-label**" automatically.
- 2. Save "CT-plan.nrrd", "CT-plan-label.nrrd" and Scene file as "CTplan.mrml". Click on the "Save" button.



3. Close Slicer3



# (1) STEP:C Non-rigid Registration

**Objective:** 

To obtain a warped image (t2ax-REG.nrrd) and Bspline transform matrix (T1.tfm)



By using the image and label data obtained the process so far, non-rigid registration will be performed.

1. Go to the "BRAINSFitIGT" module from "Registration" category of module list



National Alliance for Medical Image Computing http://www.na-mic.org



Input: CT-plan.mrml, t2ax-N4.nrrd and t2ax-label.nrrd

- 2. Start Slicer3
- 3. Click on the "Load Scene" and load CT-plan.mrml
- 4. Click on the "Add Data" and select t2ax-N4.nrrd and t2ax-label.nrrd. For the t2ax-label.nrrd, check "<u>LabelMap</u>" check box and click on the "Apply"



National Alliance for Medical Image Computing http://www.na-mic.org



Set "BRAINSFitIGT" module parameters as follows

- Set Fixed image volume = "CT-plan", Moving image volume = "t2ax-N4"
- Set BSpline transform = create a new transform and name it "T1" and Output image volume = create a new volume and name it "t2ax-REG"
- Set Input fixed mask = "CT-plan-label", Input moving mask = "t2ax-label". Check "ROI" of Mask Proceeding

| Input Parameters |                              |
|------------------|------------------------------|
|                  | Fixed Image Volume None 📼 🚔  |
|                  | Moving Image Volume None 🔤 🛓 |







#### Output: T1 and t2ax-REG

4. Check "Initialize with CenterOfROIAlign registration phase", "Include Rigid registration phase", "Include ScaleVersor3D registration phase", "Include ScaleSkewVersor3D registration phase", "Include Affine registration phase" and "Include ROI BSpline registration phase"



- 5. Click "Apply"
- 6. After about 39 sec (on the test environment), you can see the moved and deformed t2ax-N4 image as "t2ax-REG".



- 1. Select "t2ax-REG" at Background layer and "t2ax-N4" at Foreground layer. The movement and deformation can be confirmed.
- 2. Select "CT-plan" at Foreground layer. You can see that the shape of the liver on MRI was deformed and fitted the liver on CT image.





National Alliance for Medical Image Computing http://www.na-mic.org



1. Save "T1.tfm" and "t2ax-REG.nrrd" and this scene as "t2ax-REG.mrml". Click on the "Save" button.



3. Close Slicer3



# (3) STEP:A Mask of Intra-CT Image

### **Objective:**

To make a mask file (CT-intra-label.nrrd) which decides a region of non-rigid registration



To obtain non rigid registration between MR and intra-CT images, CT-CT registration transform  $T_2$  will be obtained in Task (2).

- 1. Operate **STEP:** *A* for intra-CT image. Load "**CT-intra.nrrd**" from the dataset. The label data will be "**CT-intra-label**" automatically.
- 2. Save "CT-intra.nrrd", "CT-intra-label.nrrd" and this scene file as "CT-intra.mrml". Click on the "Save" button.
- 3. Close Slicer3



# (2) STEP:C Non-rigid Registration

**Objective:** 

To obtain a warped image (CT-plan-REG.nrrd) and Bspline transform matrix (T2.tfm)



By using the image and label data obtained the process so far, non-rigid registration will be performed.

1. Go to the "BRAINSFitIGT" module from "Registration" category of module list



National Alliance for Medical Image Computing http://www.na-mic.org



#### Input: CT-intra.mrml, CT-plan.nrrd and CT-plan-label.nrrd

- 2. Start Slicer3
- 3. Click on the "Load Scene" and load CT-intra.mrml
- Click on the "Add Data" and select CT-plan.nrrd and CT-plan-label.nrrd. For the CT-plan-label.nrrd, check "<u>LabelMap</u>" check box and click on the "Apply"





Input: CT-intra.nrrd, CT-plan.nrrd and CT-plan-label

Set "BRAINSFitIGT" module parameters as follows

- Set Fixed image volume = "CT-intra", Moving image volume = "CT-plan"
- Set BSpline transform = create a new transform and name it "T2" and Output image volume = create a new volume and name it "CT-plan-REG"
- Set Input fixed mask = "CT-intra-label", Input moving mask = "CT-plan-label". Check "ROI" of Mask Proceeding

| Input Parameters |                     |      |  |
|------------------|---------------------|------|--|
|                  | Fixed Image Volume  | None |  |
|                  | Mo∨ing Image ∀olume | None |  |

| <ul> <li>Output Settings (At Least One Output Must Be Specified.)</li> </ul> |                                   |  |  |
|------------------------------------------------------------------------------|-----------------------------------|--|--|
|                                                                              | Slicer BSpline Transform None 💷 🛋 |  |  |
|                                                                              | Slicer Linear Transform None      |  |  |
|                                                                              | Output Transform None 🔤 🛋         |  |  |
|                                                                              | Output Image Volume None 🔤 🛓      |  |  |
| Output Image Pixel                                                           | Type I float short ushort int     |  |  |





#### **Output: T2 and CT-plan-REG**

4. Check "Initialize with CenterOfROIAlign registration phase", "Include Rigid registration phase", "Include ScaleVersor3D registration phase", "Include ScaleSkewVersor3D registration phase", "Include Affine registration phase" and "Include ROI BSpline registration phase"



- 5. Click "Apply"
- 6. After about 23 sec (on the test environment), you can see the moved and deformed CT-plan image as "CT-plan-REG".



- Select "CT-plan-REG" at Background layer and "CT-plan" at Foreground layer. The movement and deformation can be confirmed.
- 2. Select "CT-intra" at Foreground layer. You can see that the shape of the liver on CT-plan was deformed and fitted the liver on CT-intra image.





National Alliance for Medical Image Computing http://www.na-mic.org



1. Save "T2.tfm" and "CT-plan-REG.nrrd" and this scene as "CT-intra-REG.mrml". Click on the "Save" button.



3. Close Slicer3



# (3) STEP:D MR-Intra-CT Image Registration

#### **Objective:**

To obtain a warped image (MR-CT-intra-REG.nrrd) by using t2ax-REG.nrrd, CT-intra.nrrd and T2.tfm.



Input: CT-intra.mrml, t2ax-N4.nrrd t2ax-REG.nrrd and T2.tfm

- 1. Start Slicer3
- 2. Click on the "Load Scene" and load CT-intra.mrml
- Click on the "Add Data" and select t2ax-REG.nrrd and T2.tfm. Click on the "Apply"



National Alliance for Medical Image Computing http://www.na-mic.org



#### Input: t2ax-REG.nrrd, CT-intra.nrrd, T2.tfm, Output: MR-CT-intra.nrrd

- 1. Go to BRAINSResample module
- Set Image To Warp = "t2ax-REG", Reference Image = "CT-intra", Output Image = create a new volume and name it "MR-CT-intra", Warp By Translation = "T2.tfm".
- 3. Check "BSpline" of Warping Parameters
- 4. Click "Apply"
- 5. After about 6 sec (on the test environment), you can see the moved and deformed t2ax-REG image as "MR-CT-intra".

| * BRAINSResample                       |                                        |
|----------------------------------------|----------------------------------------|
|                                        | Parameter set e                        |
|                                        | Status Complete                        |
| <ul> <li>Inputs</li> </ul>             |                                        |
|                                        | Image To Warp CTEG 🔤                   |
|                                        | Reference Image CTra 😑                 |
| ▲ Outputs                              |                                        |
|                                        | Output Image MR-Ctra                   |
| Pi                                     | xel Type 🔳 float 🔲 short 📃 ushort 📃 in |
|                                        | 🔲 uint 🔲 uchar 📃 binary                |
| <ul> <li>Warping Parameters</li> </ul> |                                        |
|                                        | Deformation Field e                    |
|                                        | Warp By Transform T2.tfm 😑 🛔           |
| Interpolation Mode 📃 NearestNeight     | por 🔲 Linear 🔳 BSpline 📘 WindowedSind  |
|                                        | Default Value 0                        |
| <ul> <li>Advanced Options</li> </ul>   |                                        |
|                                        |                                        |



- Select "MR-CT-intra" at Background layer and "t2ax-REG" at Foreground layer. The movement and deformation can be confirmed.
- Select "CT-intra" at Foreground layer. You can see that the shape of the liver of MR-CT-intra was deformed and fitted the liver on CT-intra image.





National Alliance for Medical Image Computing http://www.na-mic.org



- 3D Slicer with BRAINSFitIGT module allows performing non-rigid image registration.
- 3D Slicer with BRAINSResample module allows performing non-rigid image deformation using Bspline transform matrix.
- In cryoablation of liver case, the distance between cryoprobe on CT image and tumor on MR image can be confirmed easily by using the non-rigid MR-CT image registration.





### **National Alliance for Medical Image Computing** NIH U54EB005149