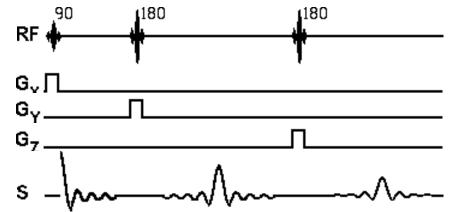
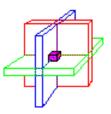
Longitudinal MR Spectroscopy

0

Dan Blezek Ileana Hancu

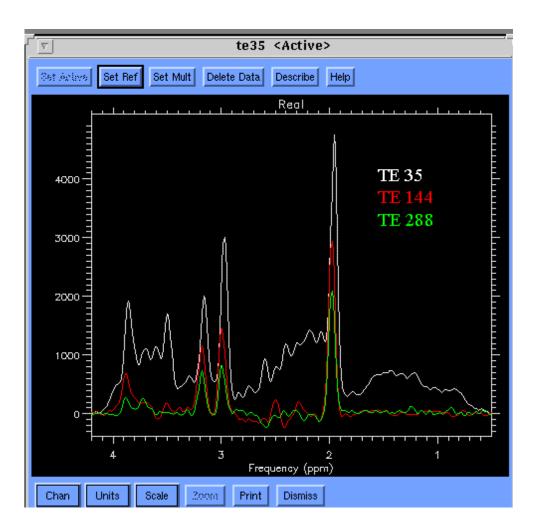

Contact: blezek@research.ge.com



imagination at work

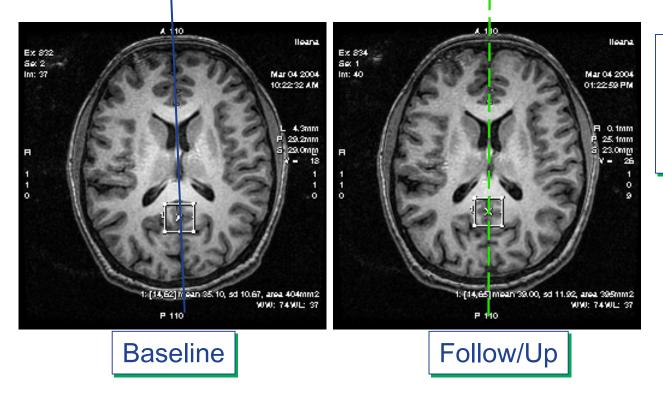
Brief introduction to MRS

- Collecting signals from chemical compounds in the body.
- Each compound has one or more resonance frequencies
- Essentially the same as NMR.
- MRS: water suppression RF pulses, followed by 3 localization pulses, followed by detection
- Only signal coming from the intersection of the 3 planes contribute to the signal

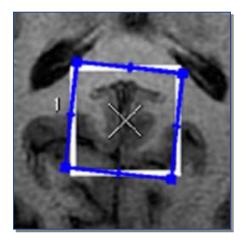


"Magnetic resonance spectroscopy in medicine: clinical impact", Ian Smith, Laura Stewart, Progress in NMR Spectroscopy, 40 (2002), 1-34

Metabolites



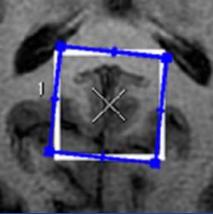
imagination at work

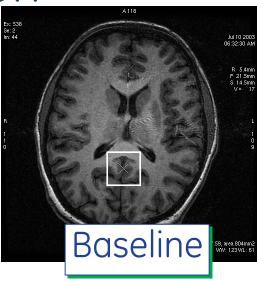

Table 2. Ranges of MR-observable metabolite concentrations reported for normal adult human brain and biopsy tissues obtained using a variety of analytical techniques including *in vivo* MRS. Values have been rounded to one decimal place

Metabolite	Concentration range (mmol/kg _{ww})	References	
Acetate	0.4-0.8	31	
NAA	7.9 16.6	50,72	
	(average 10.3)		
NAAG	0.6 - 2.7	59	
ATP	3.0	63	
Alanine	0.2 - 1.4	72,161,162	
GABA	1.3 - 1.9	72,161	
Aspartate	1.0 - 1.4	72,162	
Choline (total)	0.9 2.5	50,161	
Creatine	5.1-10.6	50,72,161	
Ethanolamine	3.3 ^a	16	
Glucose	1.0	90	
Glutamate	6.0-12.5	72,76,161,162	
Glutamine	3.0-5.8	14,72,162	
Glutathione	2.0	162	
Glycerol	<0.1		
Glycerophosphorylcholine	1.0	74	
Glycine	0.4 - 1.0	161,162	
Histamine	$< 0.1^{a}$	118	
Histidine	0.09	162	
Homocarnosine	0.23	162	
Myo-inositol	3.8 8.1	50,72,161	
Scyllo-inositol	0.3-0.6	137	
Lactate	0.4	161	
Phenylalanine	<0.1	162	
Phosphocreatine	3.2–5.5	63,77	
Phosphorylcholine	0.6	74	
Phosphorylethanolamine	1.1 - 1.5	74,77,162	
Pyruvate	0.2	31	
Serine	0.4	162	
Succinate	0.4	31	
Taurine	0.9-1.5	72,161,162	
Threonine	0.3	162	
Tryptophan	< 0 .1	162	
Tyrosine	< 0 .1	163	
Valine	0.1	162	

The Problem

Manual Placement Center Delta: 3.7 mm Rotation: ~2⁰ Overlap: ~75%


MR Spectroscopy Registration


Manual voxel replacement

- 8*cc* voxel (20x20x20*mm*)
- Visually correct placement
- Mis-aligned by 4mm
- Occurs out of plane
- Rotated voxel reduces overlap

Voxel repositioning error:

#	Avg/Std(mm)	%	Ν
1	2.9 / 1.3	79.5	15
2	1.4 / 0.8	89.4	12
3	3.9 / 2.3	72.2	12
4	3.3 / 3.4	76.4	15

Image Registration

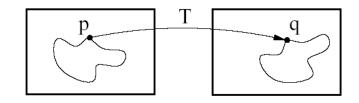
Mutual Information

Joint Entropy of two random variables, A & B:

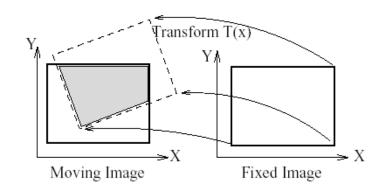
$$H(A,B) = \int p_{AB}(a,b) \log p_{AB}(a,b) \, da \, db$$

If A & B are independent:

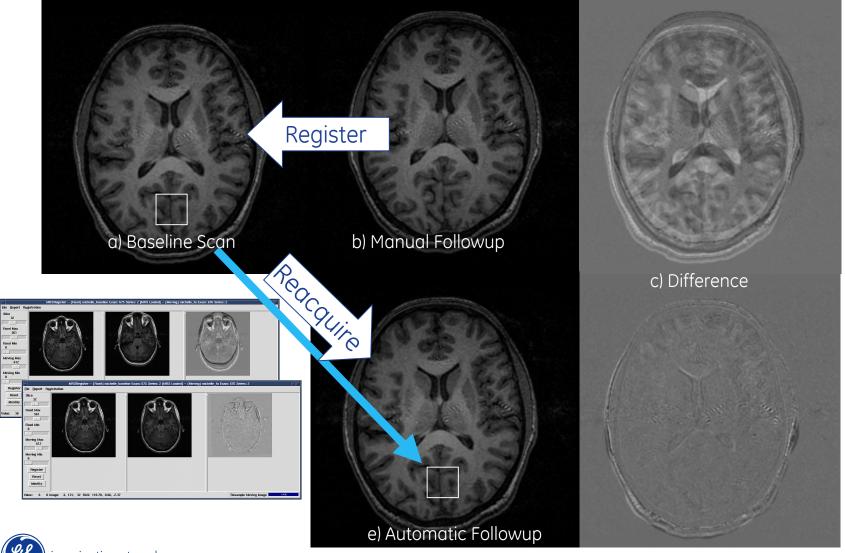
$$p_{AB}(a,b) = p_A(a)p_B(b)$$
$$H(A,B) = H(A) + H(B)$$


If there is any dependency:

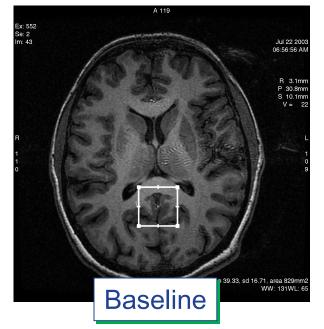
$$H(A,B) < H(A) + H(B)$$

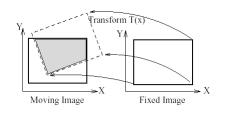

Maximize the "Mutual Information" equation:

$$I(A,B) = H(A) + H(B) - H(A,B)$$


Finding a transform from one space to another.

P. Viola and W. M. Wells III. *Mutual information:* An approach for the registration of object models and images. Inter. J. Comp. Vis., 1997.




Application to MR Spectroscopy: 1.5T

Retrospective Evaluation

Overlap Calculation

A 119

Follow up Actual placement Slice: 45 Center: R4, P29, S14 A 119 Ex: 552 Se: 2 Im: 43 R 1 0 0

Follow up Predicted location Slice: 44 Center: R3, P31, S10

Results

Volunteer	1	2	3	4	Average	Avg. Displacement
Manual Overlap (%)	84	86	87	89	86%	1.85 <i>mm</i>
Automatic Overlap (%)	94	94	94	94	94%	0.79 <i>mm</i>

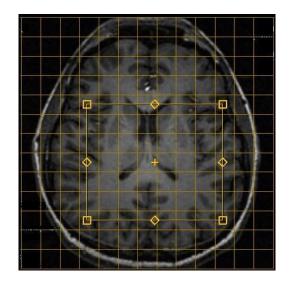
	Cr	Glu	Glu/Cr		Glu/Cr mI		r
Manual	3.84	7.40	6.96		96 6.18		
Automatic	<u>2.76</u>	<u>6.23</u>	6.89		6.01	5.15	
	Cho	Cho/	Cr	NAA	A NA	A/Cr	
Manual	4.53	5.3	3	4.32	2 3	.65	

Table: Intra-session average coefficient of variation for manual and automatic MRS voxel placement. Underlined values indicate > 10% improvement for automatic placement.

<u>4.73</u>

4.82

Automatic

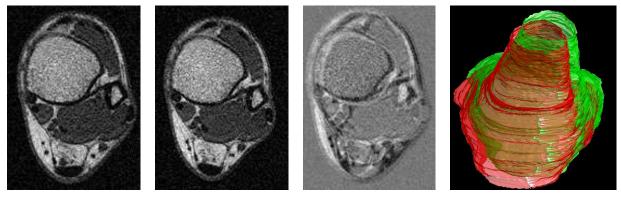

4.12

4.22

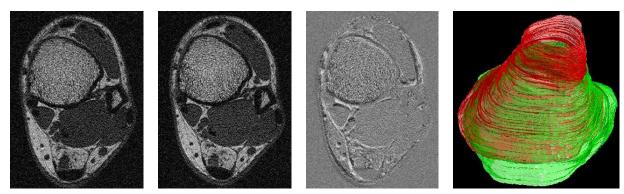
Registration for CSI

- Continuation of MGH collaboration
- Automatic CSI grid placement
- Joint ISMRM abstract
 - Drs. Gonzalez and Ratai
 - Martinos Ctr. For Biomedical Imaging, MGH

	CSI grid	Center				
		voxel				
Visual repos. overlap	Visual repos. overlap 83 6					
Automatic repos. overlap 95 89						
Table 2: % overlap between baseline and f/u CSI						
grids and individual, interior center voxel.						



	Cr	Cho	Cho/Cr	NAA	NAA/Cr
% SD visual repos.	19.0	19.3	19.6	13.7	16.8
% SD automatic repos.	13.5	14.7	11.8	13.4	12.5
Table 1: Average % SD for all the voxels and volunteers included in the study.					



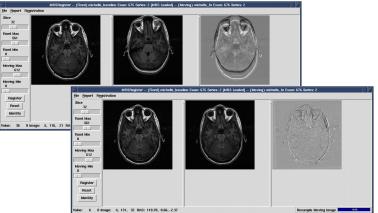
Musculoskeletal Registration

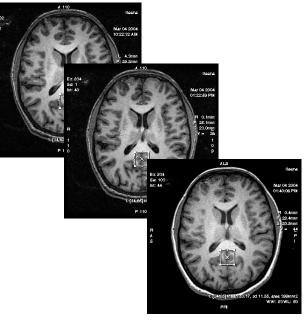
- UCSF collaboration
- Musculoskeletal registration

Manual Prescription

Auto-prescription

Images courtesy of Janet H. Blumenfeld, Julio Carballido-Gamio, Radhika Srinivasan, Sharmila Majumdar Department of Radiology, University of California, San Francisco, San Francisco, California, USA


Status & Next Steps


Published

- NMR in Biomedicine
- Software
 - Host registration software
 - Custom PSD to acquire triple oblique
 - Improved workflow in 12M4

Collaborations

- Installed at: MGH, UCSF, Mayo, AMC
- In use for Pfizer trial at AMC

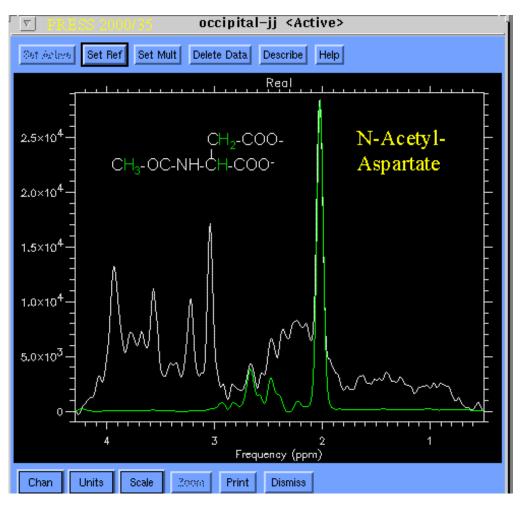
Longitudinal MR Spectroscopy

0

Dan Blezek Ileana Hancu

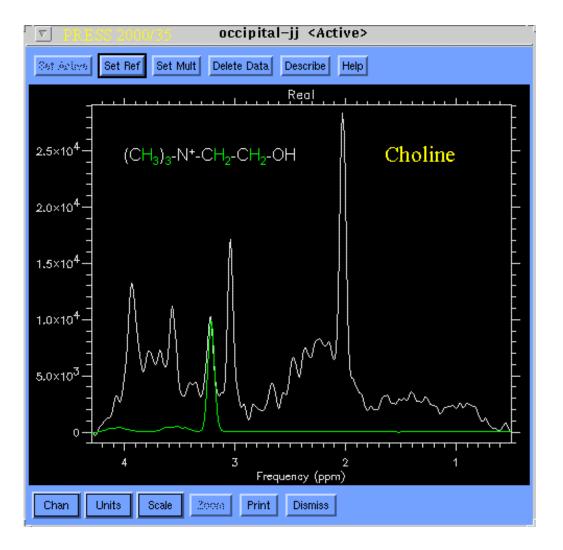
Contact: blezek@research.ge.com

imagination at work


Appendix

imagination at work

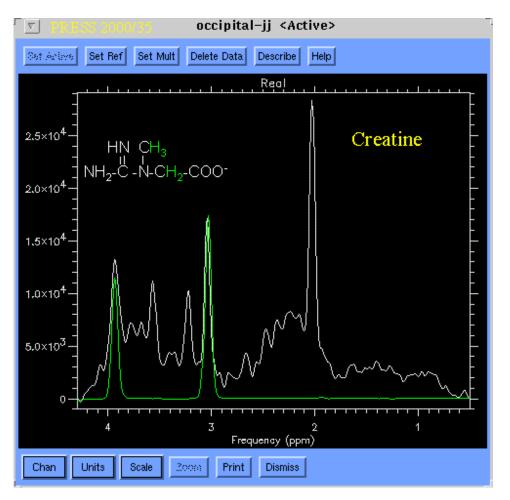
What each metabolite means: NAA



>~10mM in a normal human brain

- >NAA is predominantly intra-neuronal: marker of neuronal density
- also correlated to the rate of mitochondrial phosphorylation
- ≽generally, regarded as a marker of neurometabolic fitness

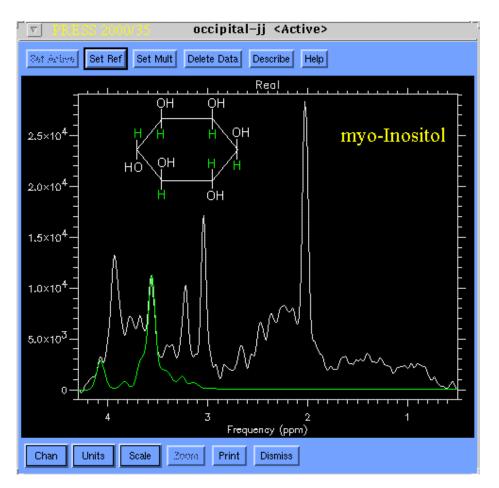
What each metabolite means: Choline


≻~2mM in a normal human brain

Cho peak is a sum of free choline, acetylcholine, glycerophorycholine, phosphocholine

rate limiting precursor to cell membrane phosphatidylcholine

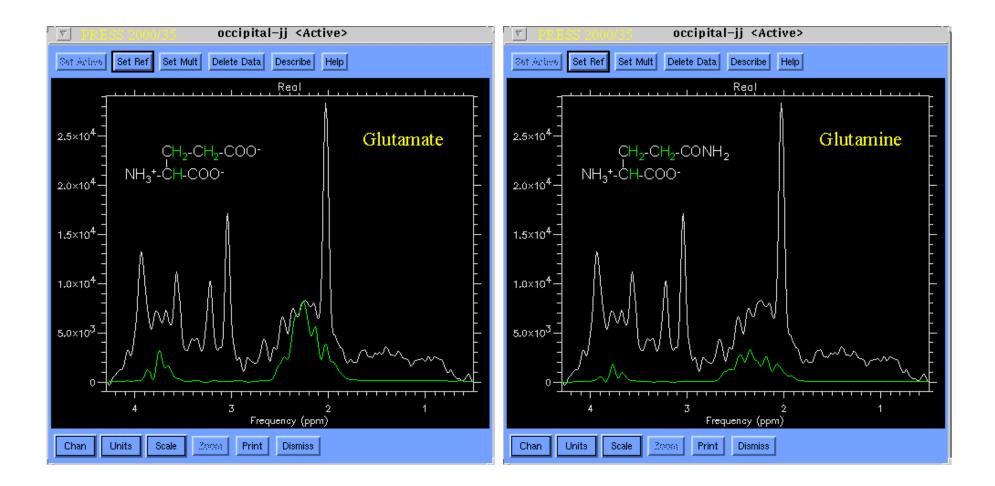
What each metabolite means: Creatine



≻~7.5mM in a normal human brain

- Cr peak is a sum of Cr and PCr
- reserve for high energy phosphates, buffers cellular ATP/ADP ratios
- Cr signal generally reflects the health os systemic energy use and storage

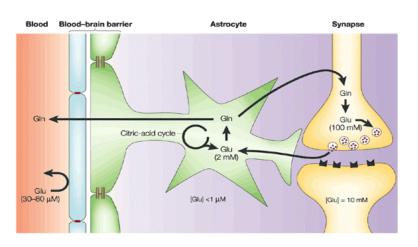
What each metabolite means: myo-Inositol


≻~7.5mM in a normal human brain

>mysterious sugar alcoholstructure similar to glucose

MI acts as a marker of glial cell numbers, osmoregulator, intracellular messenger, detoxification agent in the brain and liver

What each metabolite means: Glu and Gln



What each metabolite means: Glu & Gln

>Glu/Gln ~12.5/5mM in a normal human brain

hard to distinguish in a spectrum-linked together through the TCA cycle

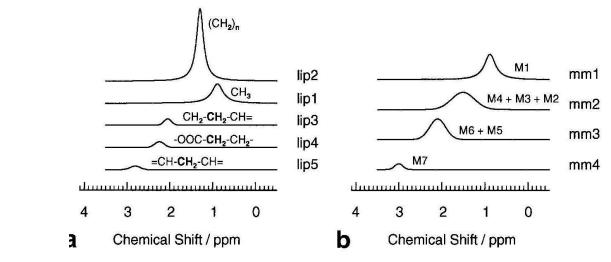
Nature Reviews | Neuroscience

- Glu: principal excitatory neurotransmitter in the brain
- neurotransmission=>temporary increases in Glu_o, taken in by glial cells and converted to Gln, transferred back to neurons
- increase in Glu_o=>cell death (increase in Ca_i, free radical an NO production)

Brain ¹H MRS: uses

> STROKE

- increased Lac/Cr, decreased NAA/Cr. Recovery from stroke accompanied by normalization of metabolite levels.
- > identify patients who respond to drug treatment


>BRAIN TUMORS

- > avoid morbidity associated with biopsies
- > attempt diagnosis (tumor management resection/chemo/rad therapy based on the particular type of tumor)
 - >benign vs. malignant
 - >different cancer types
 - >invasiveness- rapidly proliferating or slowly growing

Brain ¹H MRS: uses: brain tumors

- > lipid, macromolecule and lactate levels play an important role in assessing grade of tumor
- increased lipids, mm and lac are correlated to tumor grade (a measure of the invasiveness of the tumor), consistent with progression from hypoxia to necrosis

 $> \downarrow mI, \downarrow Cr meningiomas$

> ^mI grade 2 astrocytomas

Cho increases with grade for astrocytomas, but highly variable for GBM imagination at work

Brain ¹H MRS: uses: brain tumors

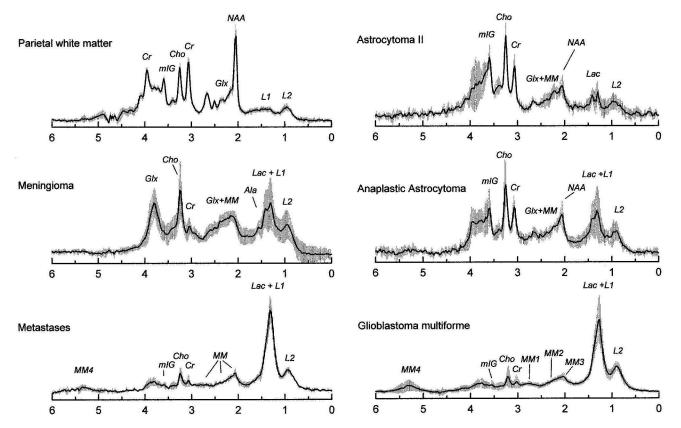


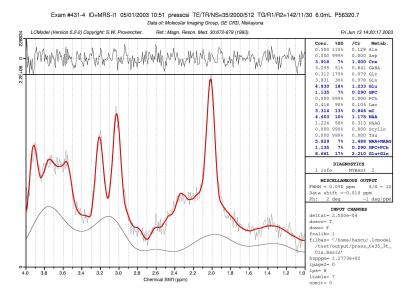
FIG. 1. Mean and SD (vertical lines) of normalized STEAM (TE = 30 ms) spectra: NWM (N = 6); meningioma (N = 8); metastases (N = 6); astrocytoma grade II (N = 5); anaplastic astrocytoma (N = 7); glioblastoma (N = 13).

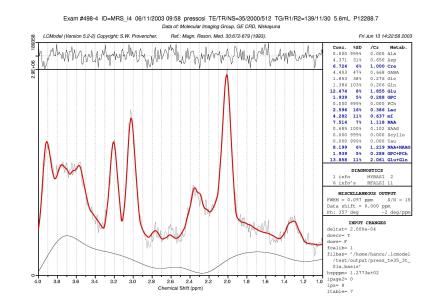
> obvious differences between certain types of tumors, less obvious between other types. MRS will not replace biopsy in all cases, but maybe in some

Clinical validation for using MRS as a decision maker for certain type of clinical validation for using MRS as a decision maker for certain type of compression progress

^{23 /} GE NAMIC Validation Workshop / MRM, 49 (2), 223-232, 2003 January 8, 2006

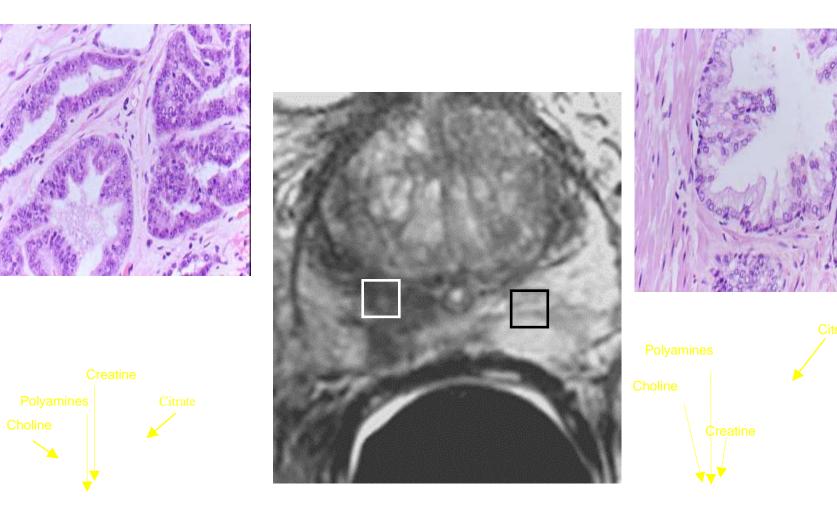
Brain ¹H MRS: uses

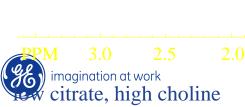

> EPILEPSY

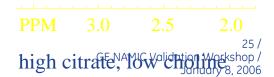

> maps of focal seizure regions prior to surgery

 $\gg \downarrow$ of GABA (major inhibitory neurotransmitter in the brain), \downarrow NAA

> DEMENTIA


> AD, reduced NAA, increased myoinositol, decreased Glu





Prostate imaging and 1H MRS

Breast imaging and ¹H MRS

High levels of Cho containing compounds for malignant breast tissue (high Cho/Cr ratios)

>alternative approach: wash-in-wash-out of paramagnetic contrast agent (GdDTPA)

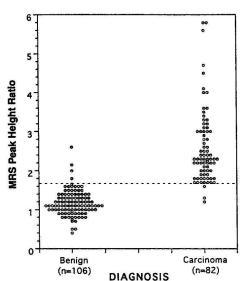


Fig. 11. ¹H MR at 360 MHz of findings of breast fine-needle biopsies from unequivocally benign versus infiltrating carcinoma. Data are grouped on the basis of the final histopathologic findings in tissue specimens. From: Ref. [102].

