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Abstract. We describe a new approach for estimating the posterior probabil-
ity of tissue labels. Conventional likelihood models are combined with a curve
length prior on boundaries, and an approximate posterior distribution on labels is
sought via the Mean Field approach. Optimizing the resulting estimator by gra-
dient descent leads to a level set style algorithm where the level set functions are
the logarithm-of-odds encoding of the posterior label probabilities in an uncon-
strained linear vector space. Applications with more than two labels are easily
accommodated. The label assignment is accomplished by the Maximum A Poste-
riori rule, so there are no problems of “overlap” or “vacuum”. We test the method
on synthetic images with additive noise. In addition, we segment a magnetic res-
onance scan into the major brain compartments and subcortical structures.

1 Introduction

Many clinical researchers rely on automatic segmentation techniques to analyze med-
ical images [1]. Popular approaches for this task are curve evolution methods, which
evolve the boundary of an object coupling image data with smoothness constraints of
a zero-level set [2–9]. Some of these methods evolve multiple zero-level sets but they
usually do not provide a simple interpretation for overlapping curves. We address this
issue by using an alternative representation called LogOdds that views the entire level
set function as a representation of posterior probabilities of label maps.

We derive the corresponding curve evolution framework, called Active Mean Fields
(AMF), by revisiting the Mean Field approximation; a method frequently used in medi-
cal imaging for estimating the posterior probabilities of label maps [10, 11]. When esti-
mating the solution to the Markov Random field model [12], simplifications result from
approximating some random field variables by their mean value. Similar to other ap-
proximations of Markov Random field models [13–15] the methods by [10, 11] lack the
notion of objects’ boundaries – this often leads to fragmented label maps. We address
this issue by incorporating a curve length prior into the Mean Field model. This results
in the AMF algorithm, which approximates the solution via a level set framework in the
LogOdds space.



The contributions of this paper are three-fold. First, we derive a new level set rep-
resentation based on multinomial Logarithm-of-Odds (LogOdds). For the probability p
of a binary variable, the LogOdds (also called logit) is the logarithm of the ratio be-
tween the probability p and its complement 1− p. As a generalization of [16], here
LogOdds defines a vector space structure that relates the evolution of multiple curves in
the level set formulation to space conditioned probabilities. An advantage of this new
representation is that it replaces the potentially ambiguous interpretation of overlapping
zero-level sets with a simpler Maximum A Posteriori (MAP) Probability criteria.

Second, we compute the Mean Field solution of the posterior probabilities of label
maps via a level set formulation. We do so by projecting the probabilities into the vector
space of LogOdds maps and determining the solution via gradient descent. This, com-
bined with our choice of prior model, results in a curve evolution algorithm coupling
the curve shortening prior from the level set model with the posterior probabilities tradi-
tionally associated with the Mean Field approximation. The resulting curve evolution,
called AMF, not only updates the zero-level set but also evolves the entire family of
curves, as it is common in the level set community, which now correspond to levels of
the posterior probabilities of labels.

Third, to the best of our knowledge, this is the first time for a level set framework to
simultaneously segment 3D MR images into the three major brain compartments and
subcortical structures. As we show in our example, if AMF is initialized by a noisy
automatic segmentation [17] it can improve the 3D segmentations by removing outliers
and islands that violate the smoothness constrains of the prior model.

This paper is organized as follows. In Section 2, we provide the mathematical defi-
nition of LogOdds, as well as their relationship with discrete probabilities. In Section 3,
we derive the AMF which approximates the Mean Field solution via a level set frame-
work. In Section 4, we apply AMF to synthetic and medical images.

2 Multinomial LogOdds

In this section, we generalize the binomial LogOdds representation discussed in [16] to
discrete distributions, which we call multinomial LogOdds. We show that the LogOdds
space has a one-to-one mapping to the space of discrete probabilities and defines a
vector space. These two properties are very important for the derivations in Section 3
where we determine an approximation for the Mean Field solution via gradient descent.

LogOdds are an example of a class of functions that map the space of discrete dis-
tributions [18] to the Euclidean space. Let PM be the open probability simplex for M
labels PM =

{
p |p = (p1, . . . , pM−1,1−∑i=1,...,M−1 pi) ∈ (0,1)M

}
. Note that PM is an

M-1 dimensional space as the Mth entry is defined by the first M-1 entries. Furthermore,
the space is open avoiding distributions that are certain about the assignment. For the
specific case of M = 2, P2 = {(p,1− p)|p ∈ (0,1)} is the Bernoulli distribution [19].
Many binary classification problems use the Bernoulli distribution where p represents
the probability that a voxel belongs to a particular anatomical structure and its comple-
ment p̄ = 1− p represents the probability of the voxel being in the background.

The multinomial LogOdds function logit(·) : PM → RM−1 of a discrete distribution
p ∈ PM is defined as the logarithm of the ratio between the ith and last entry of p:
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[logit(p )]i , log
(

pi

pM

)
,

with i ∈ {1, . . . ,M−1}. The inverse of the log odds function logit(·) is the generalized
logistic function

[σ(t )]i ,
{

eti
Z , for i ∈ {1, . . . ,M−1}
1
Z , if i = M

, (1)

where Z , 1 + ∑ j=1,...,M−1 et j is the normalization factor. Having defined logit(·) and
σ(·), we now induced from PM the M-1 dimensional space of LogOdds
LM−1 , {logit(p)|p ∈ PM}. Note that LM−1 is equivalent to (M-1) dimensional real
vector space. In Appendix A, we make use of this vector space structure to induce a
vector space on PM .

3 Approximating the Mean Field Solution via Curve Evolution

We now combine the Mean Field approximation with the level set framework by using
the LogOdds parametrization. We do so by embedding the Mean Field parameters into
the LogOdds space. We then determine the optimal parameters via gradient descent
which we is realized in the level set formulation. This results in the AMF algorithm
which computes space conditioned probabilities while incorporating regional as well as
boundary properties of objects.

3.1 Using Gradient Descent

We now derive a model for segmenting medical images via the Mean Field approxima-
tion. The segmentation problem can be described as assigning each voxel of the image
I to an anatomical compartment, which results in the label map T . Without priors,
the relationship between the label map T and the image I is generally unclear as the
image might not visualize some anatomical boundaries or is corrupted by noise and
other image artifacts. Some of these difficulties can be addressed by the use of prior
models. This results in estimating posterior probabilities which can, in some cases, be
accomplished via the Mean Field approximation [11, 15].

The Mean Field approach makes the problem of estimating the posterior probabili-
ties P(T |I ) feasible by approximating P(T |I ) as a factorized distribution
Q(T ;θ) = ∏x Qx(Tx;θ), where θ are the parameters defining Q(T ;θ). The approach
now computes the parameter setting θ̂ that minimize Kullback-Leibler (KL) divergence
between the true posterior probability P(T |I ) and the approximation Q(T ;θ)

D(Q(T ;θ)||P(T |I )) = EQ

(
log

Q(T ;θ)
P(T |I )

)
= ∑T ∈TQ(T ;θ) log

Q(T ;θ)
P(T |I )

,

where T is the space of all label maps T and EQ(·) is the expected value. In a nutshell,
the Mean Field approximation determines the solution to

θ̂ , minθ D(Q(T ;θ)||P(T |I )). (2)
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Frequently, the multinomial distribution Q(T ;θ) is parametrized by the component
probabilities, in which case Equation (2) is a constrained minimization problem. We
obtain an unconstrained problem by using the LogOdds parametrization.
θ , (θ1, . . . ,θn) ∈ Ln

M parametrizes the multinomial distribution Qx as
Qx(Tx = j;θx) = [σ(θx)] j. Equation (2) is now an unconstrained problem whose solu-
tion can be approximated via the following gradient descent:

θ(k+1) = θ(k)−λ · ∂
∂θ

D(Q(T ;θ)||P(T |I ))|θ=θ(k) ,

where λ is the step size parameter.
In the remainder of this section we derive the update term, which can be rewritten

using the expected value EQ [log(P(T ))] of the log prior of the label map log(P(T )),
and the KL divergence D(Q(T ;θ)||P(I |T )) of the estimated probability distribution
Q(T ;θ) and label likelihood P(I |T ). For notational convenience, we will continue to
use the KL divergence even when its second argument is a not a probability distribution
over T . (We also note that the likelihood could be re-normalized without affecting the
solution.)

∂
∂θ

D(Q(T ;θ)||P(T |I )) =
∂

∂θ
EQ [log(Q(T ;θ))− log(P(T |I ))]

=
∂

∂θ
EQ [log(Q(T ;θ))−log(P(I |T ))]− ∂

∂θ
EQ [log(P(T ))]

=
∂

∂θ
D(Q(T ;θ)||P(I |T ))− ∂

∂θ
EQ [log(P(T ))] .

(3)

The first term drives the estimate Q(T ;θ) towards the normalized label likelihood
P(I |T ). The prior P(T ) is defined in Section 3.3 in such a way that the second term
∂

∂θ EQ [log(P(T ))] encourages smoothness along the boundary of the object.

3.2 The Derivative of the KL Divergence of Q(T ;θ) and P(I |T )

To simplify the computation of the derivative of the KL divergence D(Q(T ;θ)||P(I |T ))
we assume that the likelihood of the label map P(I |T ) = ∏x∈IP(Ix|Tx) is factorized
over the image domain I, which is typically a valid assumption. In this case,
D(Q(T ;θ)||P(I |T )) is the sum of KL divergences over I:

D(Q(T ;θ)||P(I |T )) = ∑x∈ID(Qx(Tx;θx)||P(Ix|Tx))

For temporary convenience, we omit the voxel index x. If we now denote the probability
of label i according to the parameter θ , (θ1, . . . ,θM) with qi , Q(T = i;θ) = [σ(θ)]i
and the normalized likelihood of label i as pi , P(I |T = i) then the derivative of the
KL divergence with respect to θi is

d
dθi

D(Q(T ;θ)||P(I |T )) =
d

dθi
qi log

qi

pi
+

d
dθi

qm log
qm

pm
+∑ j 6={i,m}

d
dθi

q j log
q j

p j
. (4)
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The derivative of q j is d
dθi

q j = d
dθi

eθ j

1+eθi +∑
j 6=ie

θ j
=

{
−q jqi , j 6= i
qi(1−qi) , i = j

and d
dθi

q j log q j
p j

=

{
−q jqi(1+ log q j

p j
) , j 6= i

qi(1−qi)(1+ log qi
pi

), i = j
so that Equation (4) can be rewritten as

qi(1−qi)(1+log
qi

pi
)−qi(1−qi−∑ j 6={i,m}q j)(1+log

qm

pm
)−qi∑ j 6={i,m}q j(1+log

q j

p j
)

=qi · (1−qi) · (log
qi

pi
− log

qm

pm
)−qi∑ j 6={i,m}q j · (log

q j

p j
− log

qm

pm
)

=[σ(θ)]i(1−[σ(θ)]i)(θi−[logit(p)]i) −∑ j 6={i,m}[σ(θ)]i[σ(θ)] j(θ j−[logit(p)] j) (5)

When used within gradient descent, the derivative of KL divergence combines a driving
force towards the LogOdds of the label likelihood [logit(px)]i with a second term, which
we call the coupling term. In areas with high uncertainty (qxi ≈ 0.5) the equation weighs
heavily to move towards the LogOdds function [logit(px)]i . However, if θxi has high
certainty about the label (qxi ≈ 0 or qxi ≈ 1) then the likelihood term is less important.

Unlike with binary representations of curves, our method allows zero-contours to
overlap as the curves now represent level set of the posterior probabilities Q(T ;θ),
where Q(T ;θ) is a multinomial distribution in Pn

m. In Pn
m, the probability maps indicate

a label map via the MAP criteria.

3.3 Determining the Smoothing Term

We now compute ∂
∂θ EQ [log(P(T ))], the second term of Equation (3). First, we define

the probabilistic model for the label map prior P(T ) as a distribution preferring smooth
boundaries in T . We do so by making the prior P(T ) a function of the arc length of
the binary maps that is defined by T [20]. For this purpose, we define T as a vector
of indicator random variables Tx ∈ {e1, . . . ,em} with the indicator [e j] j = 1 and zero
otherwise. We can then extract from T a binary map [T ]i , (T1i , . . . ,Tni) for each
label i. The arc length L([T ]i) of the binary map [T ]i is defined as the length of the
boundaries in [T ]i. Based on the arc length for each label we can then specify the prior
as P(T ) , 1

Z e−∑i L([T ]i) = 1
Z ∏ie−L([T ]i) ∼∏iP([T ]i) and rewrite the derivative of the

expected value as

∂
∂θ

EQ(T ;θ) [log(P(T ))] = −∑i=1,...,m
∂

∂θ
EQ(T ;θ) [L([T ]i)]

= −∑i=1,...,m
∂

∂θ
EQ([T ]i;θ) [L([T ]i)] .

It is intractable to compute EQ([T ]i;θ) as we have to sum over all possible label maps
[T ]i with i = 1, . . . ,m. According to Lemma 2 of Appendix B, however, an approxima-
tion for the expected value is

EQ([T ]i;θ) [L([T ]i)] ≈ −
Z ∞

−∞
σ(α)(1−σ(α))L(H ([θ]i−α))dα

= −
Z ∞

−∞
σ(α)(1−σ(α))

ZZ

I
δ(θxi −α)dx dα,
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where H (y) , {1 for y > 0,0 otherwise} is the Heaviside Function, δ(·) the Dirac Delta
function, and [θ]i , (θ1i , . . . ,θni) are the parameters of label i. The above approximation
would be accurate if L([T ]i) were a sum of functions (or P(T ) were independent in
space) as outlined in Lemma 2.

We compute the derivative of the above approximation by applying the Euclidean
curve shortening flow [21], which states that d

dθ
RR
I δ(θ−α)dx = κα(θ)|∇α(θ)|δ(θ−α),

where ∇α(θ) is the derivative of the LogOdds map θ with respect to the α-contour in
θ and κα(θ) = div( ∇α(θ)

|∇α(θ)| ) is the corresponding curvature. Thus, we approximate the
derivative of the expected value as the weighted integral over the curve shortening flow
of all contours in the LogOdds map θ,

∂
∂θ

EQ [log(P(T ))]≈−
Z ∞

−∞
σ(α)(1−σ(α))κα(θ)|∇α(θ)|δ(θ−α)dα.

The derivative for each voxel location x and label i is defined as

∂
∂θxi

EQ [log(P(T ))]≈−σ(θxi) · (1−σ(θxi))κθxi
(θxi)|∇θxi

(θxi)|. (6)

Combing the results of this section, we compute the solution to the Mean Field approx-
imation as defined in Equation (2) through the following curve evolution

θ(k+1)
xi = θ(k)

xi −λ ·
(
[σ(θ(k)

x )]i · (1− [σ(θ(k)
x )]i) · (θ(k)

xi − [logit(px)]i)

−∑ j 6={i,m}[σ(θ(k)
x )]i · [σ(θ(k)

x )] j ·
(
θx j − [logit(px)] j

)

+ ·σ(θ(k)
xi ) · (1−σ(θ(k)

xi )) ·κ
θ(k)

xi
(θ(k)

xi )|∇
θ(k)

xi
(θ(k)

xi )|
)

.

(7)

This update function defines the AMF algorithm. In a level set framework, the first
term of the update formulation corresponds to the image coupling term. This coupling
term is defined by the LogOdds of the corresponding normalized likelihoods, which
are normally determined beforehand (e.g. with Gaussian classification techniques as
in Section 4.3). The second part of our method defines the curve shortening flow,
which controls the smoothness of the boundary. Both terms are weighted by the product
[σ(θ(k)

x )]i · (1− [σ(θ(k)
x )]i) or [σ(θ(k)

x )]i · [σ(θ(k)
x )] j so that it may be possible to use the

“narrow-band” style frequently discussed in the level set community.
The above derivations are greatly simplified by embedding θ in the vector space

of LogOdds. The more usual parametrization requires each entry of θ to be confined
to the interval [0,1] and each vector θx needs to sum up to one. The corresponding
gradient descent would therefore need to map each update to the manifold of discrete
probabilities. Another advantage of the LogOdds representation is that our algorithm
can simultaneously evolve multiple curves. The curves are level sets of LogOdds maps,
which define posterior probabilities in our case. Applying MAP rule, each voxel is
clearly assigned to a label. AMF is therefore free of complications with overlap or
vacuum, which is a common problem in other multi-label level set formulations.

This completes our derivation of the AMF method. The resulting algorithm com-
bines local constraints at each voxel location with global smoothness constraints of the
boundaries.
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Fig. 1. Our level set evolution (green line) over a noisy image with corresponding LogOdds maps.
The fragmented maps (last column) are obtained from a Gaussian likelihood model. In compari-
son, our results are smooth and connected even though the initial curve did not overlap with the
square.

4 Experiments

We now apply the AMF to two examples. We first discuss the curve evolution of our al-
gorithm on a noisy image that was segmented by a Gaussian classifier into a fragmented
label map. The corresponding probability maps are the inputs to our algorithm, which
robustly identifies the boundary of the structure. The second experiment includes real
MRI images, in which AMF automatically segments the major brain compartments as
well as subcortical structures. Due to the LogOdds parametrization, our method natu-
rally evolves families of curves.

4.1 Segmenting Noisy Images

We now apply the AMF algorithm of Section 3 to a noisy image of a square (see top row
of Figure 1). Before doing so, we compute the likelihood through a Gaussian intensity
model, which results in a noisy LogOdds map (bottom, right) and, when thresholded,
in a fragmented segmentation (top, right). The robustness of the classifier is greatly im-
pacted by the noise as the approach ignores dependencies between neighboring voxels.

We initialize our curve evolution with the distance map of a small circle (see green
circle in top, left image and distance map below) and the input is the noisy LogOdds
map of the normalized likelihood (bottom, right). The initial curve is disconnected from
the square forcing our method to split the zero-level set into two separate curves by
Iteration 1. The circle connected to the square is expanding while the other curve is
shrinking. Our curve evolution further evolves both curves until the connected curve
converges to the shape of the square and the disconnected curve vanishes.

The evolution produces the LogOdds maps shown in the bottom row of Figure 1.
Initially, the dark blue region shrinks, i.e. the number of voxels with high certainty
about the presence of the square is decreasing. The shrinking is due to the discrepancy
between the initial LogOdds map and the input label likelihoods. As the method pro-
gresses, the blue region assimilates towards the predefined LogOdds map. Unlike the
segmentation produced through thresholding the initial likelihoods, our level set method
filters out the noise. The final LogOdds map is smooth and the binary map shows the
square as one connected region.
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4.2 Segmenting Magnetic Resonance Images

In this experiment, we apply the AMF algorithm to a real 3D Magnetic Resonance (MR)
scan (T1-weighted, matrix=256×256×124, dimension=0.9375×0.9375×1.5mm) to au-
tomatically segment the scan into the major brain compartments (gray matter = dark
yellow, white matter = white, cerebrospinal fluid = blue) as well as the ventricles (right
= yellow, left = pink), the thalamus (right = red, left = orange), and the caudate (right
= turquoise, left = green). Figure 2 shows example slices of the segmentations, which
were produced in 1.8 hours on a PC (dual processor Xoen, 3.0 GHz, 2 gig ram). We
also segmented the scan using the approach of [17]. We determined the accuracy of
each subcortical segmentation by computing its Dice score with respect to the manu-
ally generated label maps, which we view as ground truth.

The segmentation of [17] received a Dice Score of 0.778 for the left caudate, 0.770
for the right caudate, 0.895 for the left thalamus, and for the right thalamus 0.896.
The label map is fragmented and has many misclassified regions. For example, in the
temporal region a part of the skull is identified as gray matter. The segmentation AMF
improves this segmentation using the corresponding space conditioned probabilities of
[17] for the definition of the label likelihoods px in Equation (7). This improvement is
also reflected in the Dice score, which is higher for each structure (left caudate: 0.789,
right caudate: 0.774, left left thalamus: 0.897, right thalamus: 0.906).

The second and forth column of Figure 2 show example slices of the label map
generated by our method. Our curve evolution model is not only robust enough to si-
multaneously segment the 3D Volume into 10 compartments, but also produces a much
smoother label map with fewer islands than [17]. Unlike in the results of [17], the 3D
model and slice of Example 1 show a subcortical region composed of oval-shaped struc-
tures, which closely match the expected anatomy in that region. In addition, the skull is
properly separated from the brain (see temporal region in Example 2). Furthermore, the
label map in the supra-sella region does not seem to be influenced by the noise in the
image.

In the final experiment, we test the robustness of AMF by again segmenting the 3D
MR image scan of Figure 2. This time the approach is initialized with a set of LogOdds
maps representing nine circles as shown in Figure 3. Figure 3 shows the segmentation
corresponding to the MR image of Example 1 of Figure 2. The method converges again
to a solution that is very similar to the previously discussed results. Based on the these
results, joining the Mean Field approach with the smoothness constraints of the level
set formulation seems to be a robust framework for removing outliers and islands.

5 Conclusion

We described a new approach for estimating the posterior probabilities of tissue labels.
We combined conventional likelihood models with a curve length prior on boundaries,
and obtained posterior distributions by way of the Mean Field method. We used the Lo-
gOdds parametrization to facilitate optimization of the estimator by gradient descent,
and with our choice of prior model, the influence of the prior is defined by the curve
shortening flow. As demonstrated by our experiments, the approach can robustly seg-
ment multiple 3D objects in MR scans.
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Subcortical Model of [17] AMF Segmentation

Fig. 2. The subcortical 3D models and two samples slices of the 3D data set segmented by [17]
and AMF. The maps of [17] are fragmented and show many falsely identified regions. AMF
produces smoother segmentations where most of the outliers are removed.

We tested the accuracy of our model by automatically identifying a single square in
a noise synthetic image. In the final experiment, our approach segmented a 3D MR scan
into the major brain compartments and subcortical structures; to our knowledge, this is
the first time for a level set approach achieved this. The AMF algorithm accurately
identified the structures and generated a smooth segmentation.

Acknowledgments: We thank Karl Krissen [22] for his level set implementation in the
3D Slicer (www.slicer.org), which we used as a starting point for our AMF implemen-
tation. We also appreciate the valuable comments by Sylvain Bouix, Torsten Rohlf-
ing, Mert Sabuncu, and Kinh Tieu. This research was supported by the NIH (NIBIB
NAMIC U54-EB005149, NCRR NAC P41-RR13218, NINDS R01-NS051826, NCRR
mBIRN U24-RR021382, U41-RR019703), the NSF (JHU ERC CISST), US Army
(SBIR W81XWH-04-C0031), and the Brain Science Foundation.

9



Initial → Final

Fig. 3. Revisiting Example 1 of Figure 2, where the level set framework is initialized by nine
circles. The resulting level set evolution is very similar to the segmentation of Figure 2.

Appendix A Define a Vector Space for Discrete Probabilities

The function logit(·) and its inverse comprise a homeomorphism between PM and LM−1
so that we can borrow the vector space structure on LM−1 to induce one on PM .

A.1 Addition in PM

The probabilistic addition pa⊕ pb in PM is constructed by mapping pa and pb into Lo-
gOdds space, performing the addition between logit(pa) and logit(pb), and then map-
ping the result back into PM via the logistic function. This operation is equivalent to a
normalized multiplication of two discrete probabilities within PM:

pa⊕ pb , σ(logit(pa)+ logit(pb)) =
1

∑i=1,...,M pai · pbi

(pa1 · pb1 , . . . , paM · pbM ) . (8)

(PM,⊕) with the zero element being the uniform distribution
( 1

M , . . . , 1
M

)
forms an

Abelian group as the probabilistic addition ⊕ is closed in PM . The additive inverse
of a discrete probability p ∈ PM is its complement p̄, defined as p̄i , 1

1+∑ j 6=i
pi
p j

, for all

i ∈ {1, ..,M}. Similar to [16], it can be shown that for certain probabilistic models of pa
and pb the probabilistic addition carries out the arithmetic of Bayes’ rule.

A.2 Scalar Multiplication in PM

For PM to be a vector space we also need to define a scalar multiplication operator. As
with the probabilistic addition, the probabilistic scalar multiplication α ~ p in PM is
defined as the logistic function of the product between α and the LogOdds logit(p):

α~ p , σ(α∗ logit(p)) =
1

∑i=1,...,M pα
i

(pα
1 , . . . , pα

M) .

This operation is equivalent to exponentiating the discrete distribution with α and nor-
malizing it. The technique of exponentiating and normalizing probabilities is frequently
used in areas such as Markov Random fields [12] for controlling the “sharpness” of dis-
crete distributions. As shown for the Binomial case in [16], α can also represent the
certainty in the boundary location within an image space.
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This completes our discussion of vector space (PM,⊕,~) with 1 as the identity ele-
ment of the scalar multiplication and p̄ =−1~ p the complement of p. By construction,
this vector space is equivalent to (LM−1,+,∗) and its addition and scalar multiplication
can be used to perform statistical computations in Pn

M .

Appendix B Define the Expected Value via the Heaviside Function

Lemma 1: If Y is a random variable with Bernoulli distribution P(Y = 1) = p ∈ [0,1]
then the expected value of F(·) : {0,1} → R with respect to Y can be defined by
the integral over the LogOdds space and the Heaviside function H (y) , {1 for y >
0,0 otherwise}: EP(Y )(F(Y )) =

R ∞
−∞ σ(α) · (1−σ(α)) ·F(H (logit(p)−α) dα.

Proof: EP(Y )(F(Y )) , pF(1)+(1− p))F(0) =
R p

0 F(1)dβ+
R 1

p F(0)dβ

=
Z 1

0
F(H (p−β))dβ =

Z ∞

−∞
F(H (logit(p)−α))

(
d

dα
σ(α)

)
dα

=
Z ∞

−∞
σ(α) · (1−σ(α)) ·F(H (logit(p)−α)) dα ¥

Lemma 2: If Y = (y1, . . . ,yn) is a vector of independent random variable with Bernoulli
distribution P = (p1, . . . , pn) where P(yx = 1) = px ∈ [0,1] for x ∈ I = {1, . . . ,n} and
the function F(·) is defined as F(Y ) = ∑x∈I fx(yx) then the expected value of F with
respect to Y is defined within the LogOdds space as

EP(Y )(F(Y )) ,
Z ∞

−∞
σ(α)(1−σ(α))F(H (logit(P)−α)) dα

Proof: EP(Y )(F(Y )) = ∑x∈IEP(Yx)(F(Yx)). Then according to Lemma 1

EP(Y )(F(Y )) = ∑
x∈I

Z ∞

−∞
σ(α) · (1−σ(α)) · fx(H (logit(px)−α)) dα

=
Z ∞

−∞
σ(α) · (1−σ(α))∑

x∈I
fx(H (logit(px)−α)) dα

=
Z ∞

−∞
σ(α) · (1−σ(α))F(H (logit(P)−α) dα ¥
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