
Mumford: Estimation Efficiency and Statistical Power in Arterial Spin Labeling FMRI. 
Printed: 3/14/06 : 12:11 PM 

Page: 1 

Title: 

 

Estimation Efficiency and Statistical Power in Arterial Spin Labeling FMRI. 

 

Authors: 

 

Jeanette A. Mumford 3 

Luis Hernandez-Garcia 1,2 

Gregory R. Lee 1,2 

Thomas E. Nichols 1,3 

 

1 University of Michigan Functional MRI laboratory ,  

2 University of Michigan Dept. of Biomedical Engineering ,  

3 University of Michigan Dept. of Biostatistics 

 

Correspondence to  

 

Luis Hernandez-Garcia 

FMRI Laboratory 

2360 Bonisteel Ave. 

Ann Arbor, MI 48109-2108 

hernan@umich.edu 

tel: (734) 763 - 9254 

fax: (734) 936 – 4218 

 

 



Mumford: Estimation Efficiency and Statistical Power in Arterial Spin Labeling FMRI. 
Printed: 3/14/06 : 12:11 PM 

Page: 2 

 

 

Abstract 

 

Arterial Spin Labeling (ASL) data are typically differenced, sometimes after interpolation, as part 

of pre-processing before statistical analysis in fMRI.  While this process can reduce the number 

of time points by half, it simplifies the subsequent signal and noise models (i.e., smoothed box-

car predictors and white noise).  In this paper we argue that ASL data are best viewed in the 

same data analytic framework as BOLD fMRI data, in that all scans are modeled and colored 

noise is accommodated.  The data are not differenced, but the control/label effect is implicitly 

built into the model.  While the models using differenced data may seem easier to implement, 

we show that differencing models either produce biased estimates of the standard errors or 

suffer from a loss in efficiency.  The main disadvantage to our approach is that non-white noise 

must be modeled in order to yield accurate standard errors, however this is a standard problem 

that has been solved for BOLD data, and the very same software can be used to account for 

such autocorrelated noise. 
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Introduction 

 

Arterial Spin Labeling (ASL) techniques have been in development for over a decade since their 

inception (Williams 1992) but it was not until more recently that arterial spin labeling was shown 

to be a very powerful technique for functional imaging of low-frequency paradigms (Aguirre 

2002, Wang 2003).  Further improvements in the technique have made it a practical tool for 

functional MRI of high-frequency (i.e., event related) paradigms by overcoming issues of 

temporal resolution, SNR, and the ability to collect multiple slices in a single TR ( Wong 2000, 

Hernandez 2004, Silva 1995).  ASL is inherently a low signal to noise ratio (SNR) technique so 

it is important to maximize the accuracy and sensitivity of the analysis. 

 

ASL techniques are very appealing for functional imaging primarily because they offer a 

physiologically meaningful and quantitative alternative to BOLD effect imaging, currently the 

dominant technique used for functional brain mapping.  In summary, ASL consists of acquiring 

image pairs made up of a “labeled” image, in which the inflowing blood has been magnetically 

labeled, and a control image without labeled blood.  Perfusion can be calculated from the 

difference of those two images, which is made up only of the labeled blood present in the 

imaged slice. The subtraction of image pairs results in an added benefit, namely that the 

subtraction of label/control pairs in ASL produces contains noise that is whiter than BOLD noise 

(Aguirre et al., 2002, Wang et al., 2003), depending on the specific subtraction scheme used for 

obtaining the labeled images from the raw ASL images (Liu et al., 2005).  

 

In this article, we consider data collected using the Turbo-CASL sequence.  Turbo-CASL is a 

spin labeling technique that takes advantage of the delay period between labeling spins at the 

neck and the time they reach the imaging plane to collect the control image, resulting in a more 

efficient use of the time.  This technique is obviously quite sensitive to transit times, so one must 
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collect a transit time measurement and adjust the timing parameters of the sequence 

accordingly.  The benefits of the technique are an increase in the temporal resolution while 

preserving some of the higher SNR characteristics of continuous ASL and the ability to obtain 

exaggerated activation responses by proper choice of labeling parameters.  The drawbacks are 

that it requires knowledge of transit times and that excessive variability of those transit times 

over the imaged tissue can result in SNR loss in some regions (Hernandez-Garcia et al. 2004 & 

2005, Lee et al. 2004). 

 

Despite the simplicity of the subtraction analysis method, it cannot strictly be optimal for 

estimation and detection of brain activity using the general linear model.  For a given linear 

model of the full (length-N) dataset, the Gauss-Markov Theorem (Graybill, 1976) dictates that 

optimally precise estimates are obtained from ordinary least squares (OLS) estimates for 

independent data, or from whitened OLS (i.e., generalized least squares, GLS) for dependent 

data.  Hence differencing can be no more accurate than OLS or GLS on the full data is likely 

sub-optimal. 

 

The goal of this work is to characterize the statistical properties of different ASL modeling 

methods.  Starting from a general linear model that includes the alternating control-label effect, 

we examine several differencing schemes including a no-differencing approach.  To measure 

goodness of the differencing schemes we calculate the bias of the variance estimators, the 

estimation efficiency and the estimator power for different study designs and error covariance 

structures.  We also analyze real data to produce a comparison of Z-scores between the models 

and explain the results in the context of signal processing. 

 

Theory 

 



Mumford: Estimation Efficiency and Statistical Power in Arterial Spin Labeling FMRI. 
Printed: 3/14/06 : 12:11 PM 

Page: 5 

We first describe the signal model, then differencing methods and their frequency responses, 

the noise model used and, finally, the estimation methods.   

 

Signal Model. We pose the signal model for ASL data in terms of a General Linear Model 

(GLM).  While Liu et al. (2002) posed a separate GLM for control and label data, we consider a 

single model for the collected data, 

Y X β ε= +  (1)

where Y  is a vector of length N that contains the original experimental data ordered as 

acquired, including labeled and non-labeled images; X is a N p×  design matrix; β  is a vector 

of p  parameters; and ε  is the error vector of length ,N  where 2Cov( ) Vε σ= .  

 

The design matrix for our experimental conditions was built to reflect the principal contributions 

to the observed ASL signal.  This signal is made up of two fixed baseline components and two 

dynamically changing components that are due to hemodynamic changes induced by the 

stimulation paradigm. 

 

The two fixed components are the MR signal from static tissue, which makes up the bulk of the 

image, and the inflowing blood signal in the baseline state.  The baseline MR signal is just 

constant in time, while the inflowing blood signal (or baseline blood flow) is sensitive to whether 

the tag is applied or not (top panel Figure 1).  Hence, the baseline blood flow regressor is simply 

a function of alternating positive and negative values, a+  and a− , depending on whether the 

tag is applied or not.  While alternating 1’s and -1’s ( 1=a ) seems natural for this predictor, 

instead 2/1=a  should be used so that the corresponding parameter expresses a unit effect in 

the data.  Note that the presence of the arterial tag corresponds to a− , since the tag is made of 

inverted spins, and hence reduces the total signal magnitude (second panel Figure 1). 
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The two activation-related regressors are the the perfusion changes and the BOLD effect 

changes in signal, generated by convolution of the stimulation function with a gamma-variate 

BOLD response function (third panel Figure 1). The changes in perfusion due to activation are 

known to have similar temporal properties to those in the BOLD response, but they are sensitive 

to the presence of the arterial inversion tag.  Thus, in order to capture the perfusion changes 

due to activation, we created the activation perfusion regressor by modulating the BOLD 

regressor with the baseline blood flow regressors to reflect the presence or absence of the 

inversion tag (fourth panel Figure 1). 

 

The observed MR signal is thus made up of the weighted sum of these four components, or 

regressors, which are depicted in Figure 1. 

 

Differencing Methods. Differencing the data can be built into the model by premultiplying both 

sides of the GLM equation by a generic differencing matrix, D: 

.DY DX Dβ ε= +  (2)

Any differencing scheme can be encompassed in this model by specification of an appropriate 

D.   We denote ID =1 , where I  is a N N×  identity matrix, for the case of no differencing at all.  

The standard pairwise differencing can be implemented with a NN ×2/  differencing matrix 

2

1 1 0
1 1

0 1 1

D

−⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟
⎜ ⎟

−⎝ ⎠

. 

The other differencing approaches we study include running subtraction, with 

NN ×− )1( differencing matrix 
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3

1 1 0
1 1

1 1

0 1 1

D

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟= −
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

, 

surround subtraction with NN ×− )2( differencing matrix, 

4

1 2 1
1 2 1

1 2 1

1 2 1

D

−⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟= −
⎜ ⎟
⎜ ⎟
⎜ ⎟− −⎝ ⎠

 

and sinc subtraction (D5).  The N N×  differencing matrix for sinc subtraction is best illustrated 

as an image of the differencing matrix, as in Figure 2.   

 

Noise Model.  It is well known that the elements of the error, ε,  are not independent, with 

( ) 2Cov Vε σ=  being non-diagonal.  For example, Zarahn et al. (1997) found that the power 

spectra of fMRI noise data follow a “1/f” frequency-domain structure, which is associated with a 

lower order autoregressive (AR) model.   In the evaluations below we will use an AR(1) plus 

white noise (WN) model; we found this autocorrelation structure to follow that of our data 

through empirical observations.  Such a model has an autocorrelation structure, V , where the 

correlation for a lag of  is defined by  

2

, 2 2
AR

k k
AR WN

V σρ
σ σ−

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 

and the variance of each measurement is given by 2 2 2
AR WNσ σ σ= +  where 2

ARσ  is the variance 

contributed from the AR(1) process, 2
WNσ  is the white noise variance and ρ  is the AR(1) 

correlation parameter.   
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The effect of differencing matrices on the noise can be thought of as a filter in terms of its 

frequency response, essentially damping some frequencies of the signal while emphasizing 

others.  Those frequency responses can be derived analytically for a given input y[n] whose 

discrete Fourier transform is given by Y(ejw), yielding the equations in Table 1.  Pairwise 

subtraction and sinc subtraction do not have a straightforward linear response since they both 

involve down-sampling the data, although sinc-subtraction subsequently upsamples the data.  In 

both of those cases, the down-sampling process causes the top half of the frequency spectrum 

to alias into the bottom half before the filtering process.  The frequency response of the filters 

can be seen in Figure 3.  In terms of their frequency response, they are very similar except for 

the imperfections of the sinc kernel used in the implementation.  In terms of detection and 

statistics, sinc subtraction preserves greater degrees of freedom than pairwise subtraction, 

which reduces the number of time points by half. 

 

Liu et al. (2005) took a similar signal-processing approach in order to examine the effects of 

differencing on the BOLD and perfusion responses observed in ASL functional time series data, 

including BOLD effects (an ASL sequence in which the acquisition is carried out with a gradient 

echo with a long echo time would also be BOLD weighted).  By modeling the acquisition 

scheme as a linear time invariant (LTI) system, they found that the control-label modulation 

shifts the activation to higher frequencies in the BOLD weighted data and the choice of 

differencing method is contingent on the spectral content of the time series (determined by the 

experimental design). 

 

Estimation.  Based on both the differenced and undifferenced data, OLS or GLS can be used to 

estimate and make inference on .β   While OLS estimates of β  are unbiased even when data 
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are temporally autocorrelated, the estimates do not have minimum variance, meaning they are 

not fully efficient; further, the estimated standard errors are biased, which can result in test 

statistics that are either too large or too small.  The optimal approach is GLS, corresponding to 

OLS on the whitened data and model, and is implemented in most fMRI packages (e.g. FSL & 

SPM).  GLS requires that the structure of the noise in the data be known or, at least, estimated 

with high precision.  The noise covariance, 2Vσ , is estimated by a variety of means (Worsley et 

al. 2002, Friston et al. 2002, Woolrich et al. 2001); most methods use a regularized fit of a low-

dimensional autocorrelation model to the OLS residuals. 

 

Given that the covariance of the error,ε , is 2Vσ , the covariance of the error of the differenced 

data, Dε , is given by 2 2T
D DDVD Vσ σ= .  Let W  be a whitening matrix such that ( ) ,T

DW V W I=  

the whitened version of the general linear model is then 

WDY WDX WDβ ε= + , (3)

and the GLS estimate of β is given by 

( )ˆ WDX WDYβ −= , (4)

where the symbol – denotes a pseudo-inverse operator (Graybill, 1976, p. 28).  The variance of 

the estimate is given by 

( ) ( ) 2ˆVar ( ) ( )
TT

D DWDX WV W WDXβ σ− −⎡ ⎤= ⎣ ⎦ . (5)

If the whitening is accurate, the middle bracketed term will be identity; however, if OLS is used 

then IW = and this term will not vanish.   

 

Two problems may arise with the estimation procedure.  First, if ID ≠  the intercept predictor in 

X will become an all-zero predictor in DX .  Since the differencing will de-mean the data, the 

baseline effect absent and that column can be omitted from DX .  More generally, effects 
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nullified by D can be removed by an appropriate transformation, resulting in a reducing number 

of columns. Second, a poorly-chosen D may induce linear dependencies into DY, resulting in a 

singular covariance matrix T
D DVDV = .  This problem can be resolved by removing rows of D 

until DV  is positive definite. 

 

The residual variance is estimated with the residual mean square of the whitened differenced 

data, 

2 1 ˆ ˆˆ ( ) ( )T
D WDY WDX WDY WDX

N p
σ β β= − −

−
. 

(6)

Then the estimated variance, ( )ˆVar β , is found by substituting 2ˆDσ  into equation (5).  Note that 

under OLS it is assumed that DV W I= = , while with GLS the assumption is ( ) .T
DW V W I=    

The T-test for the null hypothesis 0:0 =βcH  is ˆ ˆVar( )T c cβ β= , where c  is a contrast used 

to express the effect of interest.   

 

Methods: Model Evaluation 

Model Details.  For a given times series with length N = 258 (TR=1.4 sec) where the temporal 

autocorrelation followed an AR(1)+WN structure, a signal model for a TurboCASL perfusion 

experiment was created for three different experimental designs: A fixed ISI event related 

design (ISI = 18, SOA = 20, stimulus duration = 2 seconds), a randomized event-related design 

(uniform distribution, 5<ISI<12sec.), and a blocked design (30 scans ON , 30 scans OFF). The 

randomized event related design was repeated 100 times to verify consistency across different 

realized designs.  Appropriate general linear models were created consisting of baseline image 

intensity, baseline blood flow, BOLD response and increases in perfusion due to activation. The 
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perfusion responses were modeled as a difference of two gamma variate functions1.  Figure 1 

graphically illustrates the first 60 seconds of the first subject’s design matrix’s regressors for a 

block design.   

 

Efficiency and Bias.  The efficiency of the estimated contrast, ˆcβ , from the different models is 

given by the reciprocal of the true variance, ( )β̂1/Var c .  If one method is less efficient than 

another method, it is not as sensitive for the detection of effect βc . 

 

The biases of 2ˆDσ  and ( )ˆVar cβ  for the differencing models under the assumptions of OLS were 

also calculated.  The derivations of these quantities are given in Appendix A.   If these estimates 

are biased, it indicates that the differenced data are correlated, hence violating the OLS 

assumption of independent measurements and resulting in test statistics that can be too large or 

too small.   

 

We computed the efficiency of the contrast estimated and bias of the estimated variance over a 

range of AR(1)+WN models.  Specifically, we studied a range of AR parameter values ( ρ ) 

between 0 and 0.9.  Also, since all values of 2
ARσ  and 2

WNσ  that share the same 2 2/AR WNσ σ  yield 

the same relative efficiency and bias values, we varied the variance of the AR(1)+WN by 

varying the ratio , 2 2/AR WNσ σ , between 0 and 25.        

 

Statistical power .  Power is the probability of detecting a given effect of magnitude βc  with a 

given significance level.  Power estimates are not meaningful when ( )ˆVar cβ  is biased; for 

                                                 
1 spm_hrf.m, SPM2, http://www.fil.ion.ucl.ac.uk/spm. 
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example negative bias leads to an overestimation of power since the test statistics are artificially 

large.  Hence we follow what is standard practice in the statistics literature, and only considered 

statistical power for methods where ( )ˆVar cβ  was found to be unbiased; this included the no 

differencing model estimated with GLS and the pairwise subtraction model estimated with OLS.    

We calculated power over a range of the signal to noise ratio (SNR=change in perfusion/σ).  

SNR was varied by varying the change in perfusion between 0.1 and 2 and fixing the variance 

at 1.45.  The details of the power calculation are described in Appendix A.   

 

Methods: Imaging data 

 

Data Collection.  All imaging was carried out using a 3.0 T Signa LX scanner (General Electric, 

Milwaukee, WI, USA) fitted with an additional, home-built, spin labeling system.  Double-coil 

turboCASL time series data collected from six subjects during a finger tapping event related 

experiment (4 slices, FOV = 24cm, ISI=18 sec, 360 sec. duration, TR=1.4 to 1.6 sec. depending 

on resting transit time, GE spiral, TE = 12ms).  Prior to acquisition of time series data, the 

sequence was optimized for each individual subject by collecting a set of Turbo-CASL images 

with varying TR (800, 1200, 1400, 1600, 1800, 2000, 2200 and 4000 ms).  Labeling time was 

always 200 ms less than TR.  The parameters that produced the highest SNR were chosen as 

the optimum TurboCASL regime as in (Hernandez-Garcia, 2004). K-space data were filtered to 

remove spurious RF noise that may be introduced by the labeling coil, and reconstructed using 

field map homogeneity correction. 

 

Data Analysis.  While there are 10 possible methods (OLS and GLS for 5 differencing methods), 

we only considered two to be practical with real data: GLS with no differencing ( 1D ) and OLS 

with simple subtraction ( 2D ).  OLS is inappropriate with any method other than simple 
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subtraction because the errors are not independent (non-white noise).  While the error 

autocorrelation of other differencing methods ( TDVD ) could feasibly be estimated, existing 

fMRI software is designed to estimate V  in un-differenced time series, and hence we only used 

GLS with the original data. 

 

For each subject, at each voxel, a GLS model with no differencing was fit with the FEAT 

software tool, which is part of FMRIB’s software library FSL2.  FSL estimates an autocorrelation 

function (ACF) at each voxel and, after tapering and non-stationary spatial smoothing, 

constructs V  for data and model whitening.  The simple subtraction data was also fit with 

FEAT, but without whitening.  T statistics were converted to Z statistics with a probability integral 

transform.  The Z statistics from each analysis were then compared.  Both methods should yield 

valid inferences, that is, null-hypothesis voxels should have comparable Z statistics; but when a 

signal is present, larger Z values are evidence of greater sensitivity. 

 

Frequency response.  Active voxels were identified by correlation analysis ***Luis:  How?  What 

threshold?***, and time courses (length = 258 points) were extracted from those active voxels 

(N=87), and from 87 non-active voxels in the frontal lobe.  Frequency spectra were computed 

from the un-differenced and differenced data and compared to the frequency spectrum obtained 

from applying the predicted frequency response function to the raw data. 

 

Results:  

 

Power and Efficiency Calculations.   

Three experimental design types were considered, as described in the Methods section: 

                                                 
2 http://www.fmrib.ox.ac.uk/fsl 
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blocked, randomized event related and fixed event related.  For the reasons described above, 

OLS was used to estimate all differencing models and GLS was only used in the no differencing 

case.  Figure 4 illustrates the % biases in both 2ˆDσ and ( )ˆVar cβ  when OLS is used to estimate 

the differencing models.  When bias is present, it is an indication that there is autocorrelation or 

variability in the data that the model is ignoring.  The top panel shows the bias in 2ˆDσ , where the 

no subtraction model results in strong negative bias while the running, surround and sinc 

subtraction models have a slightly negative bias and the pairwise differencing model has almost 

no bias.  The bottom panel illustrates that ( )ˆVar cβ  is biased in all cases except for the simple 

subtraction model.  To understand the effect of bias on a p-value, consider an example where 

there is -50% bias in ( )ˆVar cβ .  If the biased variance is used in the test statistic, a biased p-

value of 0.01 will be found when the true p-value is actually 0.05; similarly a 0.0001 biased p-

value would be found when 0.004 is actually correct.  So the biased variance inflates 

significance and can lead to an incorrect conclusion of significant activation. 

 

The study design used in Figure 4 was block design, but results were similar for the event 

related designs also.  Different values of ρ  were also considered and as ρ  decreased, the bias 

in the undifferenced model approached 0, but the percent bias in ( )ˆVar cβ  was similar to that 

shown in Figure 4 for the other differencing methods (results not shown). 

 

The linear models considered were able to estimate the amplitude of the responses with varying 

statistical efficiency.  Figure 5 shows the relative efficiency of the model estimation under the 

block design study, where the differencing models estimated with OLS are compared to no 

differencing with GLS.  The pairwise differencing method shows the greatest loss in efficiency, 
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up to 24% or more, while the other differencing methods are more efficient.  The results were 

similar for the event related designs, with a slightly larger loss in efficiency for the pairwise 

subtraction method but the relative efficiency for the other methods remained near 1 (results not 

shown). 

 

For the power study we only consider models where ( )ˆVar cβ  has little or no bias: simple 

subtraction using OLS and no differencing with GLS.  Figure 6 shows the power for no 

differencing with GLS and and that of pairwise differencing with OLS for the 3 study designs 

over SNR values ranging between 0.1 and 1.4.  The AR(1)+WN model used had a correlation 

parameter 0.90ρ = , AR variance, 2 0.11ARσ =  and white noise variance, 2 2WNσ = .  The dotted 

lines on the random event related figure indicate ± 2 standard deviations of the average power 

over the 100 realizations.  As expected, the power is similar between the two methods for the 

block design, but the no differencing GLS model is shown to have larger power for the event 

related study designs.  Another view of this result is shown in Figure 7 which shows the ratio of 

OLS power to GLS power.  The random event related design can have up to 35% (s.d. 1.5%) 

lower power when OLS is used compared to GLS.  Note that the U-shape to the curves in 

Figure 7 is to be expected:  When SNR is very small, power is 0 for any method, and hence 

there is no percent difference; likewise, when SNR is very large, power is 1 for any method and 

there is again no difference.  

 

Experimental Data. 

Undifferenced time courses from the experimental ASL time series were extracted from 87 

active and  87 resting voxels (identified through simple correlation analysis).  The effects of the 

differencing schemes on the frequency spectra of data can be seen in figure 8.  The frequency 

spectra of time courses extracted from resting and active voxels are shown in the top and 
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bottom panels, respectively.  The blue line shows the spectral content of the raw (undifferenced) 

data, the other lines show the effects of simple, running, surround, and sinc subtraction 

schemes.  The appearance of the raw data spectra indicate that our data contain primarily white 

noise but also a strong AR(1) component ( 0.90ρ = , 2 0.11ARσ = , 2 2WNσ = ) .  

 

The activation effects, which are typically low frequency by nature, were modulated by the 

Nyquist frequency because of the alternating acquisition pattern of the control and labeled 

images. Hence, the activation effects appeared in the higher frequency range in the spectrum. 

The theory and data agreed that the un-differenced, running and surround subtraction methods 

attenuated the frequency content at the higher frequencies, while the simple and sinc 

subtraction methods aliased the high-frequency content into the low-frequency range of the 

spectrum because of the sub-sampling step.  The sinc interpolation kernel produced the smooth 

roll-off seen at the half-Nyquist frequency. Obviously, the un-differenced data retained all its 

frequency content.  Crucially, only the pairwise subtraction yielded a flat spectrum (for its halved 

sampling rate), and all other methods had spectra that were more colored than the original data, 

consistent with our bias calculations above. 

  

Statistical Mapping.  Figure 9 shows a comparison of Z statistics obtained using GLS with no 

differencing and OLS with pairwise subtraction in all subjects.  These figures show that the Z 

values for the full model tend to be larger when the statistics are positive and smaller when the 

statistics are negative, when compared to the subtracted model, which would result in more 

significant voxels found without differencing and using GLS.  Figure 10 displays the boxplots of 

the difference in Z values from the two methods when the Z value from either of the methods 

was larger than 2.  Boxplots display the distribution of data by showing the median (horizontal 

black line in box), the first and third quartiles of the data (edges of the blue box), range of points 
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included within 1.5*interquartile range (whiskers) and outliers (points).    In all cases, the median 

is larger than 0, indicating that typically the Z value from the undifferenced model using GLS is 

larger than the differenced model estimated with OLS. 

 

Discussion:  

 

Our analysis indicates that the most powerful analysis of ASL data is obtained by using the full 

data, with no differencing and building the control/label effect into the model implicitly.  Using 

direct calculations and real data we’ve found increased sensitivity with this approach relative to 

the standard approach of pairwise differencing.  Pairwise differencing reduces the 

dimensionality of the data in half, yet should yield white noise.  Our calculations found that 

differencing methods that did not severely reduce dimensionality had good efficiency even with 

OLS (Fig. 5), but such methods colored the noise (Fig. 8) leading to biased variance estimates 

when using OLS (Fig. 4).  So while surround and sinc subtraction methods may appear 

attractive efficiency-wise, they induce yet more spectral structure which would have to be 

accounted for in subsequent modeling (in particular, to obtain accurate standard errors).  

Hence, we are drawn to the modeling of the full data with standard BOLD fMRI methods, with 

an ASL-tailored design matrix X  and BOLD noise models for V .  While noise modeling is a 

challenge, it is now a standard feature in BOLD fMRI modeling software. 

 

As there are substantial differences between pairwise differencing and the other methods in 

terms of efficiency, it is tempting to infer that this is due to pairwise differencing yielding half as 

many observations.  In fact, a simple example shows this can’t be.  Consider the case of 

pairwise differencing with independent noise and a rest-only experiment; that is, the design 

matrix consists just of an intercept and the control/tag effect (-½, ½, -½, …).  Even though the 
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residual variance in the differenced model is doubled ( 2
1

2 2)( σεεσ =−= +iiD Var ), this is exactly 

countered by DX having twice the relative efficiency as X.  That is, under iid errors, pairwise 

differencing is fully efficient for the baseline perfusion effect, despite having half the 

observations of the full model.  This suggests that the colored noise plays a role; in particular, 

the other differencing methods are providing some sort of approximate whitening which then 

improves their efficiency.   Any such whitening is definitely approximate, however, as marked by 

the bias in the variance estimates.  Specifically, in Figure 5, these differencing methods have 

greater efficiency than no-differencing as the autocorrelation increases.   

  

When the ultimate goal is group modeling, that is, making inferences for a whole population and 

not just a single subject, the same conclusion prevails.  Optimal inferences are obtained by 

using the best intrasubject estimates, no differencing with GLS, and taking the intrasubject 

variances )ˆ( βcVar to the second level (Beckman et al., Woolrich et al.).  An alternative, less 

optimal approach is only to take the contrast estimates to the second level (Holmes & Friston, 

Friston, et al., 1999); with this method the combined between and within subject variance 

estimate is made implicitly and intrasubject standard errors are not needed.  In this instance, 

only the precision of the intrasubject estimates matters and hence any of the high-efficiency 

methods (no differencing and full-dimensionality differencing methods; see Figure 5) could be 

used.  However, the simplicity of no-differencing and its unity with BOLD modeling methods 

makes it our method of choice, even if the simple group method is used. 

 

Although the data presented here were collected using Turbo-CASL, there are large number of 

ASL techniques that can be used to perform perfusion based fMRI.  In terms of statistical 

properties, using Turbo-CASL presents primarily the same issues as other ASL techniques:  the 

signal is modulated by a control-label acquisition pattern and it contains temporally 
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autocorrelated noise like all MRI data.  Because of the faster acquisition, though, aliasing of 

respiratory and cardiac effects will occur in different locations in frequency than in standard 

continuous ASL techniques.  The transit time sensitivity of Turbo-CASL likely introduces 

regionally specific spatial correlations, depending on the vascular network feeding the region.  

Otherwise, the temporal characteristics of the signal are the same as in other ASL techniques.  

Hence, the issues discussed in this article can be generalized to all ASL techniques. 

 

Summary:  

In our comparison of techniques for modeling ASL data, we found that when using OLS to 

estimate a model, pairwise subtraction is less efficient than running, surround, sinc and no 

subtraction, but pairwise subtraction produces variance estimates with almost no bias.  The no 

differencing model estimated with GLS also yields unbiased variance estimates, but with more 

efficiency than pairwise subtraction.  Therefore the two methods with valid test statistics are the 

no subtraction estimated with GLS and pairwise subtraction estimated with OLS, and with real 

data we found larger test statistics using no subtraction estimated with GLS, reflecting the gain 

in efficiency. 

 

Appendix A 

Bias.  We evaluated the bias in the estimate of ( )ˆVar cβ  for each of the differencing models.  

When OLS is used to estimate the model (W I= ), then the expected value of 2ˆDσ  is given by 

( ) ( ) ( ) ( )( )2 1
2ˆ D T T
D D DN - pE σ  tr V tr DX V DX DX DXσ

−⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
, 

(A1)

And so the % bias of 2ˆDσ  is given by  
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( )2 2

2

ˆ
100 D D

D

E σ σ

σ

−
×  

(A2)

 (Watson, 1955).  Therefore, the % bias of the estimated variance of a contrast, ˆcβ , is given by   

( )( ) ( )
( )

( ) ( )( )
( ) ( )( )

1
2

2

ˆ ˆ ˆ
100 100 1

ˆ

T T
D

T
T

D D

E c c E σ c DX DX c

c c DX V DX c

β β

β σ

−

− −

⎛ ⎞
− ⎜ ⎟

× = × −⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Var Var

Var
 

(A3)

 

Power.  Power is the probability of detecting a given effect of magnitude βc  with a given 

significance level α    

( ) ( )ˆ1 ( )P T t t c Var cα α β β≥ = −Φ − , 
(A4)

where αt  is the T-statistic critical value and )(⋅Φ  is the cumulative density function of a standard 

Normal distribution (where we have assumed the degrees of freedom, pN − , to be large, as 

would be typical for a ASL study).  The AR(1)+WN autocovariance 2Vσ  was assumed known, 

and was used to find estimator variance with equation (5). 
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Table 1. – Frequency Responses of the differencing schemes 

Type of Differencing Fourier Domain Expression 

D1 No subtraction Y1(e
jω ) =Y(e jω )  

D2 Simple subtraction Y2(e jω ) =Y(e jω / 2)(1− e− jω / 2) 

D3 Running subtraction Y3(e jω ) =Y(e jω )(1− e− j(ω+π ))  

D4 Surround subtraction Y4 (e jω ) =Y (e jω )(2 − e− j(ω+π ) − e j(ω+π )) 

D5   Sinc subtraction Y5(e jω ) =Y(e jω / 2)(1− e− jω / 2)S(e jω ) * 

 

*In an ideal Infinite Impulse Response filter, S is a perfect rect function but, depending on the 

implementation, it typically is the Fourier transform of a truncated sinc function instead. 
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Figure 1.  Predictors used in GLM for collected data (first 40 time points).   The top two 

figures show baseline MR signal and baseline blood flow regressors and the bottom two 

figures show the BOLD effect and activation perfusion signal regressors.  Note that the 

baseline blood flow predictor ranges from -0.5 to 0.5; this is done so that the 

corresponding parameter in the model represents a unit effect in the data. 
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Figure 2. Example of a differencing matrix that implements a sinc subtraction 

(differencing matrix D5). 
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Figure 3. Expected Frequency responses as predicted by the equations in table 1.  They 

correspond to each of the differencing matrices.  These responses are in agreement with 

(Liu 2005). 
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Figure 4.  Bias of ( )β̂Var , expressed as percent of true variance, for subtraction 

methods using OLS for different AR(1)+WN variance models.  The study design used was 

the block design and the AR parameter, ρ , was fixed at 0.9. 
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Figure 5.  Estimation efficiency (relative to no differencing, GLS analysis) for subtraction 

methods using OLS for different AR+WN variance models for a block design study 
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Figure 6.  Power of the no differencing model estimated with GLS and pairwise 

subtraction estimated with OLS for 3 study designs.  Random ISI event related design 

indicates average power over 100 iterations (solid) and ±2 standard deviations (dashed). 
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Figure 7.  Relative Power 100× (OLS-GLS)/GLS for the different study designs .  Random 

ISI event related design indicates average relative power over 100 iterations (solid) and 

±2 standard deviations (dashed). 



Mumford: Estimation Efficiency and Statistical Power in Arterial Spin Labeling FMRI. 
Printed: 3/14/06 : 12:11 PM 

Page: 31 

 

Figure 8.   Frequency spectra of raw and differenced data in Resting (top) and Active 

(bottom) voxels.    
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Figure 9.  Comparison of Z values from pairwise differencing for all subjects using OLS 

and full data using GLS.  Note that for most positive values GLS is larger and for most 

negative values GLS is smaller, indicating greater sensitivity.   
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Figure 10.  Boxplots of difference in Z values when the Z value from either method was 

larger than 2.  The number of voxels included in each subject’s boxplot are indicated 

beneath the subject number.  Boxplots display the distribution of data by showing the 

median (horizontal black line in box), the first and third quartiles of the data (edges of the 

blue box), range of points included within 1.5*interquartile range (whiskers) and outliers 

(points).  Positive values indicate greater sensitivity with full data using GLS.   

 


