Difference between revisions of "Engineering:Isomics"

From NAMIC Wiki
Jump to: navigation, search
Line 56: Line 56:
 
| |
 
| |
  
== [[NA-MIC_NCBC_Collaboration:Automated_FE_Mesh_Development | Finite  
+
== [[NA-MIC_NCBC_Collaboration:Automated_FE_Mesh_Development | Finite Element Meshing from Image Segmentations]] ==
Element Meshing from Image Segmentations]] ==
 
  
 
Funded through the NCBC collaboration grant mechanism, this projects  
 
Funded through the NCBC collaboration grant mechanism, this projects  

Revision as of 14:00, 4 June 2008

Home < Engineering:Isomics

Back to NA-MIC Engineering

Overview of Isomics Projects (PI: Steve Pieper)

At Isomics, we are responsible for the end-user application software that serves as vehicle for translating Core 1 algorithms and Core 2 engineering infrastructure directly into the hands of the Core 3 biological scientists. Primary effort goes into the 3D Slicer software, the reference implementation of NA-MIC Kit technologies. In close collaboration with our Engineering Core colleagues and cooperative development with other NIH funded efforts, we work to provide usable, documented, and efficient application software that enables world class science.

Isomics Projects

3DSlicerLogo-V-Color-201x204.png

3D Slicer

The 3D Slicer platform has been completely reworked through the joint efforts of the NA-MIC community and the BIRN, NAC, NCIGT, and other cooperative grants that leverage the common infrastructure. Isomics is pleased to serve as the chief architects and major implementors of this package. In this role, we help coordinate group development activities to ensure interoperability and cross platform support. More...


NITRC.png

The Neuroimaging Tools and Resources Clearinghouse (NITRC)

Isomics has taken the lead in NA-MIC interactions with our sister effort at NITRC. Where NA-MIC provides algorithms and software infrastructure, NITRC is dedicated to hosting an active community of neuroimaging researchers and supporting them with information and well structured access to software tools. This productive collaboration is resulting in the development of a [http://www.slicer.org/slicerWiki/index.php/Slicer3:Loadable_Modules loadable module infrastructure] for the Slicer3 platform through which dedicated neuroimaging modules can have a project-focused web presence using NITRC, while integrating tightly with the Slicer3 application for usability. More...


Cli-mesh-quality-small-062607.png

Finite Element Meshing from Image Segmentations

Funded through the NCBC collaboration grant mechanism, this projects brings together researchers at Isomics and University of Iowa to create a fully open source pipeline to go from CT scanned cadaver hands to high quality finite element meshes to support biomechanical research. More...


LevelSetSegmentGUIModule alpha.png

Outreach and Collaboration Efforts

As Co-PI for the NA-MIC Dissemination Core in addition to his engineering role, Dr. Pieper serves as the engineering contact for many external contacts with groups that may benefit from NA-MIC technology development. Productive technical interchanges are actively underway with a diverse group of sites and in an wide variety of application areas. These include pediatric cardiology research with Boston Children's Hospital and University of Utah; radiation treatment planning research with Massachussets General Hospital; vascular modeling with the Mario Negri Institute; whole-body segmentation with Washington University, St. Louis, and Stanford University; surgical robotics with Johns Hopkins University and the Japanese government; microscopy image analysis with UCSD and Ohio State; cardiovascular image informatics with Johns Hopkins University; biomechanical simulation of blast dynamics with MIT and the US Army.