Difference between revisions of "BRAINSCut"

From NAMIC Wiki
Jump to: navigation, search
 
Line 26: Line 26:
  
 
===Figures===
 
===Figures===
<gallery Caption="BRAINSTracer" widths="300px" heights="300px" perrow="2">
+
<gallery Caption="BRAINSCut" widths="300px" heights="300px" perrow="2">
 
Image:BRAINS-ANN-Brain-Subject1-T1.png|Brain Mask generated using BRAINSMush image and BRAINSCut overlaid on T1 for Subject 1
 
Image:BRAINS-ANN-Brain-Subject1-T1.png|Brain Mask generated using BRAINSMush image and BRAINSCut overlaid on T1 for Subject 1
 
Image:BRAINS-ANN-Brain-Subject1-T2.png|Brain Mask generated using BRAINSMush image and BRAINSCut overlaid on T2 for Subject 1
 
Image:BRAINS-ANN-Brain-Subject1-T2.png|Brain Mask generated using BRAINSMush image and BRAINSCut overlaid on T2 for Subject 1
Line 36: Line 36:
 
Image:BRAINS-ANN-Brain-Subject3-T2.png|Brain Mask generated using BRAINSMush image and BRAINSCut overlaid on T2 for Subject 3
 
Image:BRAINS-ANN-Brain-Subject3-T2.png|Brain Mask generated using BRAINSMush image and BRAINSCut overlaid on T2 for Subject 3
 
</gallery>
 
</gallery>
 
 
  
 
===Usage===
 
===Usage===

Latest revision as of 21:53, 10 December 2008

Home < BRAINSCut

Back to NA-MIC Brains Collaboration


Summary

BRAINSCut is a software package for segmentation of structures using artificial neural networks. Currently this tool supports the segmentation of the following structures: brain, caudate, putamen, thalamus, hippocampus, anterior cerebellum, interior posterior cerebellum, superior posterior cerebellum, corpus medullary. Future regions will include the globus pallidus, amygdala, and nucleus accumbens. The command line uses the Slicer3 execution model framework.


Progress

  1. Integration with a high dimensional registration to the atlas probability map
  2. Improved thresholding of the output activation maps
  3. Code added to NITRC
  4. Coupled Neural network with MUSH Brain to generate a brain mask without requiring tissue classification


To Do

  1. Complete integration with the FANN library
  2. Link to a BSD style neural network library
  3. Look at the ability to use for segmentation of cortical regions


Key Investigators

  • University of Iowa: Hans Johnson, Ronald Pierson, Kent Williams, Greg Harris, Vincent Magnotta


Figures

Usage

 BRAINSCut  [--processinformationaddress <std::string>] [--xml] [--echo]
             [--applyModel] [--trainModel] [--createVectors]
             [--generateProbability] [--trainModelStartIndex <int>]
             [--netConfiguration <std::string>] [--] [--version] [-h]

  Description: Automatic Segmentation using neural networks
 
  Author(s): Vince Magnotta, Hans Johnson, Greg Harris, Kent Williams

Where:

  --processinformationaddress <std::string>
    Address of a structure to store process information (progress, abort,
    etc.). (default: 0)

  --xml
    Produce xml description of command line arguments (default: 0)

  --echo
    Echo the command line arguments (default: 0)

  --applyModel
    apply the neural net (default: 0)

  --trainModel
    train the neural net (default: 0)

  --createVectors
    create vectors for training neural net (default: 0)

  --generateProbability
    Generate probability map (default: 0)

  --trainModelStartIndex <int>
    Starting iteration for training (default: 0)

  --netConfiguration <std::string>
    XML File defining AutoSegmentation parameters

  --,  --ignore_rest
    Ignores the rest of the labeled arguments following this flag.

  --version
    Displays version information and exits.

  -h,  --help
    Displays usage information and exits.


 

Links


Papers