Difference between revisions of "Seedings results comparison"

From NAMIC Wiki
Jump to: navigation, search
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
__NOTOC__
 
<gallery>
 
Image:PW-MIT2010.png|[[2010_Summer_Project_Week#Projects|Projects List]]
 
</gallery>
 
 
 
==Key Investigators==
 
==Key Investigators==
 
* Harvard Medical School: Antonin Perrot-Audet, Kishore Mosaliganti, Sean Megason
 
* Harvard Medical School: Antonin Perrot-Audet, Kishore Mosaliganti, Sean Megason
Line 29: Line 24:
  
 
<h3>Progress</h3>
 
<h3>Progress</h3>
* Implemented 3 different algorithms with ITK:
+
* Implemented algorithms in ITK:
** Tensor voting,
+
** Radial voting,
** Hough transform,
+
** Multi-scale Distance Map weighted Laplacian of Gaussian.
 +
* Created a collaboration framework using ITK:
 +
** Set of utilities for input images normalization
 +
** Developed a windowed local maxima filter
 +
* Evaluated and compared output of on synthetic 2D data & 3D Nuclei channel from Megason Lab
 
** Multi-scale Distance Map weighted Laplacian of Gaussian.  
 
** Multi-scale Distance Map weighted Laplacian of Gaussian.  
 +
** Radial voting
 +
 +
<h3>Next</h3>
 +
* Implement state of the art seeding algorithms with ITK
 +
** gradient flow tracking
 +
* Evaluate new algorithms
 +
 
</div>
 
</div>
 
</div>
 
</div>
  
 +
==Ressources==
 +
* Source code :
 +
git@github.com:antonin07130/NAMICSeeding.git
 +
We shall use [http://git-scm.com/ git] for version control :
 +
A small introduction to git : [http://sourceforge.net/apps/trac/gofigure2/wiki/GIT here]
 +
* Data set :
 +
Non public
 
<div style="width: 97%; float: left;">
 
<div style="width: 97%; float: left;">

Latest revision as of 14:06, 25 June 2010

Home < Seedings results comparison

Key Investigators

  • Harvard Medical School: Antonin Perrot-Audet, Kishore Mosaliganti, Sean Megason
  • RPI: Badri Roysam, Raghav Padmanabhan

Project

Seed.png

Objective

  • Improve segmentation algorithms initialization for nuclei detection in 3D fluorescent microscopy:
    • get a better accuracy,
    • improve computation speed.

Approach, Plan

  • Compare different algorithms,
  • Find a measure to evaluate different algorithm results,
  • Fusion output of several algorithms.

Progress

  • Implemented algorithms in ITK:
    • Radial voting,
    • Multi-scale Distance Map weighted Laplacian of Gaussian.
  • Created a collaboration framework using ITK:
    • Set of utilities for input images normalization
    • Developed a windowed local maxima filter
  • Evaluated and compared output of on synthetic 2D data & 3D Nuclei channel from Megason Lab
    • Multi-scale Distance Map weighted Laplacian of Gaussian.
    • Radial voting

Next

  • Implement state of the art seeding algorithms with ITK
    • gradient flow tracking
  • Evaluate new algorithms

Ressources

  • Source code :
git@github.com:antonin07130/NAMICSeeding.git

We shall use git for version control : A small introduction to git : here

  • Data set :
Non public