Difference between revisions of "Nodule Sizing"
From NAMIC Wiki
(Created page with '__NOTOC__ <gallery> Image:PW-2015SLC.png|Projects List </gallery> ==Key Investigators== ==Project Description== <div style="margin: 20px;…') |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
==Key Investigators== | ==Key Investigators== | ||
− | + | Raul San Jose | |
==Project Description== | ==Project Description== | ||
Line 11: | Line 11: | ||
<div style="width: 27%; float: left; padding-right: 3%;"> | <div style="width: 27%; float: left; padding-right: 3%;"> | ||
<h3>Objective</h3> | <h3>Objective</h3> | ||
− | * | + | * Create a Slicer module for lung nodule sizing |
+ | * Integrate the [https://public.kitware.com/LesionSizingKit/index.php/Main_Page Lesion Sizing Toolkit] nodule segmentation as part of CIP | ||
</div> | </div> | ||
<div style="width: 27%; float: left; padding-right: 3%;"> | <div style="width: 27%; float: left; padding-right: 3%;"> | ||
<h3>Approach, Plan</h3> | <h3>Approach, Plan</h3> | ||
− | * | + | * Create CLI to integrate LST functionality |
+ | * Create a python module that computes lesion measurements based on nodule segmentation results | ||
+ | ** Use ROI tools to select nodule region | ||
</div> | </div> | ||
<div style="width: 27%; float: left; padding-right: 3%;"> | <div style="width: 27%; float: left; padding-right: 3%;"> | ||
<h3>Progress</h3> | <h3>Progress</h3> | ||
− | * | + | * The LST nodule segmentation tool has been integrated as a CLI into [https://github.com/acil-bwh/ChestImagingPlatform/tree/release/CommandLineTools/GenerateLesionSegmentation CIP] |
+ | [[File:LesionSegmentation.png|300px|thumb|left|Lesion Segmentation]] | ||
</div> | </div> | ||
</div> | </div> |
Latest revision as of 08:13, 9 January 2015
Home < Nodule SizingKey Investigators
Raul San Jose
Project Description
Objective
- Create a Slicer module for lung nodule sizing
- Integrate the Lesion Sizing Toolkit nodule segmentation as part of CIP
Approach, Plan
- Create CLI to integrate LST functionality
- Create a python module that computes lesion measurements based on nodule segmentation results
- Use ROI tools to select nodule region