Difference between revisions of "2016 Winter Project Week/Projects/ShapeAnalysis"

From NAMIC Wiki
Jump to: navigation, search
Line 32: Line 32:
  
 
==Background and References==
 
==Background and References==
 +
Bayesian Principal Geodesic Analysis for Estimating Intrinsic Diffeomorphic Image Variability, Miaomiao Zhang and P. T. Fletcher, MICCAI, 2014.
 
<!-- Use this space for information that may help people better understand your project, like links to papers, source code, or data -->
 
<!-- Use this space for information that may help people better understand your project, like links to papers, source code, or data -->

Revision as of 17:58, 4 January 2016

Home < 2016 Winter Project Week < Projects < ShapeAnalysis

Key Investigators

  • Miaomiao Zhang (MIT)
  • Polina Golland (MIT)

Project Description

Statistical shape analysis develops methods for the geometric study of objects. The means to represent shapes for a group of images is the geometric transformation between each individual and the mean image. One challenge of shape variability quantification is 'the curse of dimensionality', for instance, the transformation grid 128x128x128 as a shape descriptor for a 3D brain image. This makes the inference procedure computationally complicate and time-consuming. An efficient method needs to be developed to handle this complex dataset.

Objective Approach and Plan Progress and Next Steps
  • Develop a low-dimensional statistical shape analysis method on the manifold of diffeomorphic transformations.

Background and References

Bayesian Principal Geodesic Analysis for Estimating Intrinsic Diffeomorphic Image Variability, Miaomiao Zhang and P. T. Fletcher, MICCAI, 2014.