Difference between revisions of "Project Week/Template"

From NAMIC Wiki
Jump to: navigation, search
 
(46 intermediate revisions by 9 users not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
<gallery>
 
<gallery>
Image:PW2009-v3.png|[[2009_Summer_Project_Week|Project Week Main Page]]
+
Image:PW-MIT2013.png|[[2013_Summer_Project_Week#Projects|Projects List]]
Image:genuFAp.jpg|Scatter plot of the original FA data through the genu of the corpus callosum of a normal brain.
 
Image:genuFA.jpg|Regression of FA data; solid line represents the mean and dotted lines the standard deviation.
 
 
</gallery>
 
</gallery>
 
==Instructions for Use of this Template==
 
#Please create a new wiki page with an appropriate title for your project using the convention Project/<Project Name>
 
#Copy the entire text of this page into the page created above
 
#Link the created page into the list of projects for the project event
 
#Delete this section from the created page
 
#Send an email to tkapur at bwh.harvard.edu if you are stuck
 
  
 
==Key Investigators==
 
==Key Investigators==
* UNC: Isabelle Corouge, Casey Goodlett, Guido Gerig
+
* GRC: Rui Li, Jim Miller
* Utah: Tom Fletcher, Ross Whitaker
+
* Kitware: Jean-Christophe Fillion-Robin
 +
* Isomics: Steve Pieper
  
 
<div style="margin: 20px;">
 
<div style="margin: 20px;">
Line 21: Line 13:
  
 
<h3>Objective</h3>
 
<h3>Objective</h3>
We are developing methods for analyzing diffusion tensor data along fiber tracts. The goal is to be able to make statistical group comparisons with fiber tracts as a common reference frame for comparison.
+
Python embedding library to manage calling python functions from C++. This will eliminate the code duplication  in Slicer.
 +
 
 +
 
  
  
Line 32: Line 26:
 
<h3>Approach, Plan</h3>
 
<h3>Approach, Plan</h3>
  
Our approach for analyzing diffusion tensors is summarized in the IPMI 2007 reference below.  The main challenge to this approach is <foo>.
+
Discuss with Jc and Steve regarding how to incorporate into Slicer. Currently it
 
+
is used as a downloadable library during superbuild, similar to SlicerExecutionModel.
Our plan for the project week is to first try out <bar>,...
 
 
 
 
 
  
 
</div>
 
</div>
Line 43: Line 34:
  
 
<h3>Progress</h3>
 
<h3>Progress</h3>
Software for the fiber tracking and statistical analysis along the tracts has been implemented. The statistical methods for diffusion tensors are implemented as ITK code as part of the [[NA-MIC/Projects/Diffusion_Image_Analysis/DTI_Software_and_Algorithm_Infrastructure|DTI Software Infrastructure]] project. The methods have been validated on a repeated scan of a healthy individual. This work has been published as a conference paper (MICCAI 2005) and a journal version (MEDIA 2006). Our recent IPMI 2007 paper includes a nonparametric regression method for analyzing data along a fiber tract.
 
<br><br><br>
 
<br><br><br>
 
<br><br><br>
 
<br><br><br>
 
  
 
</div>
 
</div>
 
</div>
 
</div>
  
==References==
+
==Delivery Mechanism==
*Fletcher P, Tao R, Jeong W, Whitaker R. [http://www.na-mic.org/publications/item/view/634 A volumetric approach to quantifying region-to-region white matter connectivity in diffusion tensor MRI.] Inf Process Med Imaging. 2007;20:346-358. PMID: 17633712.
+
 
* Corouge I, Fletcher P, Joshi S, Gouttard S, Gerig G. [http://www.na-mic.org/publications/item/view/292 Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis.] Med Image Anal. 2006 Oct;10(5):786-98. PMID: 16926104.
+
https://github.com/grclirui/PythonCppAPI.git
* Corouge I, Fletcher P, Joshi S, Gilmore J, Gerig G. [http://www.na-mic.org/publications/item/view/1122 Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis.] Int Conf Med Image Comput Comput Assist Interv. 2005;8(Pt 1):131-9. PMID: 16685838.
 
* Goodlett C, Corouge I, Jomier M, Gerig G, A Quantitative DTI Fiber Tract Analysis Suite, The Insight Journal, vol. ISC/NAMIC/ MICCAI Workshop on Open-Source Software, 2005, Online publication: http://hdl.handle.net/1926/39 .
 

Latest revision as of 03:03, 18 June 2013

Home < Project Week < Template

Key Investigators

  • GRC: Rui Li, Jim Miller
  • Kitware: Jean-Christophe Fillion-Robin
  • Isomics: Steve Pieper

Objective

Python embedding library to manage calling python functions from C++. This will eliminate the code duplication in Slicer.




Approach, Plan

Discuss with Jc and Steve regarding how to incorporate into Slicer. Currently it is used as a downloadable library during superbuild, similar to SlicerExecutionModel.

Progress

Delivery Mechanism

https://github.com/grclirui/PythonCppAPI.git