Difference between revisions of "2014 Summer Project Week:CBC 3D I2MConversion"

From NAMIC Wiki
Jump to: navigation, search
(Created page with '__NOTOC__ <gallery> Image:BCC_Slicer.png | BCC mesh of a brain labeled image Image:MC_Slicer.png | BCC mesh of a brain labeled image after MC Image:MeshBCCSection.jpg | BCC mesh …')
 
m (Text replacement - "http://www.slicer.org/slicerWiki/index.php/" to "https://www.slicer.org/wiki/")
 
(4 intermediate revisions by 2 users not shown)
Line 17: Line 17:
 
* Ron Kikinis (BWH/SPL)
 
* Ron Kikinis (BWH/SPL)
 
* Nikos Chrisochoides (CRTC)
 
* Nikos Chrisochoides (CRTC)
 +
 +
[[Image:Mesh_extension.jpg|800px]]
  
 
==Project Description==
 
==Project Description==
Line 29: Line 31:
 
<div style="width: 27%; float: left; padding-right: 3%;">
 
<div style="width: 27%; float: left; padding-right: 3%;">
 
<h3>Objective</h3>
 
<h3>Objective</h3>
* Develop an extension that implements the Image-To-Mesh Conversion.
+
* Develop a mesh generation extension that encapsulates two CLI modules:  
* The extension encapsulates two CLI modules:
 
 
** BodyCentricCubic (BCC) mesh  
 
** BodyCentricCubic (BCC) mesh  
 
** Mesh Compression (MC)  
 
** Mesh Compression (MC)  
Line 37: Line 38:
 
<h3>Approach, Plan</h3>
 
<h3>Approach, Plan</h3>
 
* The current version of the extension supports a single-tissue mesh generation.
 
* The current version of the extension supports a single-tissue mesh generation.
* The future versions will support multi-tissue meshes.   
+
* The next versions will support multi-tissue mesh generation.   
 
</div>
 
</div>
 
<div style="width: 27%; float: left; padding-right: 3%;">
 
<div style="width: 27%; float: left; padding-right: 3%;">
 
<h3>Progress</h3>
 
<h3>Progress</h3>
* The experimental-build of the extension has uploaded on MIDAS dashboard.
+
* The extension is available in the nightly build version of Slicer with name: '''CBC_3D_I2MConversion'''.
* The documentation page for the extension has created in the wiki (http://www.slicer.org/slicerWiki/index.php/Documentation/Nightly/Extensions/CBC_3D_I2MConversion).
+
* The documentation page for the extension is available here: https://www.slicer.org/wiki/Documentation/Nightly/Extensions/CBC_3D_I2MConversion.
 
* Three cases (brain, nidus and ventricles) are provided for testing.
 
* Three cases (brain, nidus and ventricles) are provided for testing.
 
</div>
 
</div>

Latest revision as of 18:07, 10 July 2017

Home < 2014 Summer Project Week:CBC 3D I2MConversion

Key Investigators

  • Fotis Drakopoulos (CRTC)
  • Yixun Liu (CRTC)
  • Andrey Fedorov (BWH/SPL)
  • Ron Kikinis (BWH/SPL)
  • Nikos Chrisochoides (CRTC)

Mesh extension.jpg

Project Description

The CBC_3D_I2MConversion project generates a tetrahedral mesh from an input labeled image. The method consists of two modules:

  • Body Centric Cubic (BCC) Mesh Generation

This module generates a Body Centric Cubic (BCC) mesh from a labeled image. Initially the generated mesh is homogeneous, that means does not distinguish different tissues. Later the module specifies which tissue each tetrahedron belongs to. Each tissue is capable of automatically adjusting its resolution based on its geometric complexity and the predefined subdivision criterion.

  • Mesh Compression (MC)

This module deforms a tetrahedral mesh towards the boundaries of the labeled image. Two point sets are extracted for the mesh deformation. The first (source point set) consists of the exterior surface vertices of the input mesh. The second (target point set) consists of the exterior surface edge points in the input labeled image. Then the input mesh is deformed by registering the source to the target point set using a Physics-Based Non-Rigid Registration method.

Objective

  • Develop a mesh generation extension that encapsulates two CLI modules:
    • BodyCentricCubic (BCC) mesh
    • Mesh Compression (MC)

Approach, Plan

  • The current version of the extension supports a single-tissue mesh generation.
  • The next versions will support multi-tissue mesh generation.

Progress

References

  • Tetrahedral Mesh Generation for Medical Imaging.

Fedorov A., Chrisochoides N., Kikinis R., Warfield S., The Insight Journal - 2005 MICCAI Open-Source Workshop

  • Mesh Deformation-based Multi-tissue Mesh Generation for Brain Images.

Yixun Liu, Panagiotis Foteinos, Andrey Chernikov and Nikos Chrisochoides. Engineering with Computers, Volume 28, pages 305-318, 2012.