Difference between revisions of "DBP2:UNC:Regional Cortical Thickness Pipeline"

From NAMIC Wiki
Jump to: navigation, search
Line 25: Line 25:
  
 
All the tools used in the current pipeline are Slicer3 modules, some of them being UNC external modules.
 
All the tools used in the current pipeline are Slicer3 modules, some of them being UNC external modules.
Thus, the user can process a data and compute a cortical thickness regional analysis, either using Slicer3 GUI modules or by command lines tools
+
The user can thus compute a regional cortical thickness analysis on one data, either within Slicer3 or by running the tools as command lines.
  
 
=== Usage (Command Line) ===
 
=== Usage (Command Line) ===

Revision as of 21:49, 12 August 2008

Home < DBP2:UNC:Regional Cortical Thickness Pipeline

Back to UNC Cortical Thickness Roadmap


Objective

We would like to create an end-to-end application within Slicer3 allowing individual and group analysis of regional cortical thickness.

General information

Pipeline description (steps)

Input: T1-weighted image

  • 1. Tissue segmentation
    • Tool: itkEMS (UNC Slicer3 external module)
  • 2. Skull stripping
    • Tool: SegPostProcess (UNC Slicer3 external module)
  • 3. Deformable registration of pediatric regional atlas
    • 3.1 Deformable registration of T1-weighted pediatric atlas
      • Tool: RegisterImages (Slicer3 module)
    • 3.2. Applying transformation to the parcellation map
      • Tool: ResampleVolume2 (Slicer3 module)
  • 4. Cortical Thickness
    • Tool: CortThick (UNC Slicer3 module)

All the tools used in the current pipeline are Slicer3 modules, some of them being UNC external modules. The user can thus compute a regional cortical thickness analysis on one data, either within Slicer3 or by running the tools as command lines.

Usage (Command Line)

Input T1_weighted image: Input T1-weigthed atlas: Input regional atlas (parcellation map):

  • 1. Tissue segmentation
    • Input: EMS-param.xml
    • Output: Image_Corrected_EMS.gipl, Label.gipl
 itkEMSCLP EMS-param.xml
  • 2. Skull stripping
    • Input: Label.gipl, Image_Corrected_EMS.gipl
    • Output: Image_Corrected_EMS_Stripped.gipl, BinaryMask.gipl (optionnal)
 SegPostProcessCLP Label.gipl  Image_Corrected_EMS_Stripped.gipl --skullstripping  Image_Corrected_EMS_Stripped.gipl (--mask BinaryMask.gipl –dilate)
  • 3. Deformable registration of pediatric regional atlas
    • 3.1 Deformable registration of T1-weighted pediatric atlas
      • Input: Atlas.gipl, Image_Corrected_EMS_Stripped.gipl
      • Output: Atlas_Registered.gipl, Atlas_Registered_Transform.txt
  RegisterImages Image_Corrected_EMS_Stripped.gipl Atlas.gipl –resampledImage  Atlas_Registered.gipl –saveTransform Atlas_Registered_Transform.txt –registration PipelineBSpline
    • 3.2. Applying transformation to the parcellation map
      • Input: Parcellation.gipl, Atlas_Registered_Transform.txt, Image_Corrected_EMS_Stripped.gipl
      • Output: Parcellation_Registered.gipl
  ResampleVolume2 Parcellation.gipl Parcellation_Registered.gipl -f Parcellation_Registered.gipl -i nn -R Image_Corrected_EMS_Stripped.gipl
  • 4. Cortical Thickness
    • Input: Parcellation_Registered.gipl, Label.gipl
    • Output: CortThick_Result_Dir/
  CortThickCLP CortThick_Result_Dir/ --par  Parcellation_Registered.gipl --inputSeg Label.gipl --Wm --Gm --Vtk --Sdm –BvsI --GMMaps

Analysis on a small pediatric dataset

Tests have been computed on a small pediatric dataset, including 2 years old and 4 years old cases

  • 2 Autistic cases
  • 1 developmental delay
  • 1 normal control


In progress

  • Workflow for individual analysis (Slicer3 external module using BatchMake)

Future work

  • UNC Slicer3 external modules available on NITRIC
  • Pediatric atlas (T1-weighted image and parcellation map) available to the community (XNAT?)
  • Workflow for group analysis