Difference between revisions of "Projects:KnowledgeBasedBayesianSegmentation"
From NAMIC Wiki
m (Update from Wiki) |
|||
Line 49: | Line 49: | ||
* [[User:Melonakos|John Melonakos]] @ Georgia Tech | * [[User:Melonakos|John Melonakos]] @ Georgia Tech | ||
+ | * Yi Gao @ Georgia Tech | ||
+ | * Allen Tannenbaum @ Georgia Tech | ||
* Luis Ibanez @ Kitware | * Luis Ibanez @ Kitware | ||
* Karthik Krishnan @ Kitware | * Karthik Krishnan @ Kitware |
Revision as of 12:39, 2 April 2007
Home < Projects:KnowledgeBasedBayesianSegmentationBack to NA-MIC_Collaborations
Objective:
This ITK filter is a segmentation algorithm which utilizes Bayes's Rule along with an affine-invarient anisotropic smoothing filter.
Progress:
Use Case
I'd like to segment a volume or sub-volume into 'N' classes in a very general manner. I will provide the data and the number of classes that I expect and the algorithm will output a labelmap with 'N' classes.
Data
We are using the Harvard structural datasets.
Algorithm
- The user sets the number of distinct classes for segmentation: 'N'
- Generate 'N' prior images (default, 'N' uniform prior images)
- Generate 'N' statistical distributions (default, 'N' normal distributions)
- Generate 'N' membership images by applying the statistical distributions to the raw data
- Generate 'N' posterior images by applying Bayes' rule to the prior and membership images
- Smooth the posterior images for 'm' iterations using an affine-invarient anisotropic smoothing filter and renormalize after each iteration (default, m = 5)
- Apply maximum a posteriori rule to apply labeling and finalize segmentation
The ITK filter design
Some Results
Project Status
- Fully incorporated into itkBayesianClassificationImageFilter and itkBayesianClassificationInitializationImageFilter in ITK CVS.
- Fully wrapped in VTK for use in Slicer.
- The working ITK code has been committed to the SandBox
References:
- J. Melonakos, K. Krishnan, and A. Tannenbaum. An ITK Filter for Bayesian Segmentation: itkBayesianClassifierImageFilter. Insight Journal, 2006.
- J. Melonakos, R. Al-Hakim, J. Fallon, and A. Tannenbaum. Knowledge-Based Segmentation of Brain MRI Scans Using the Insight Toolkit. Insight Journal, 2005.
Key Investigators:
- John Melonakos @ Georgia Tech
- Yi Gao @ Georgia Tech
- Allen Tannenbaum @ Georgia Tech
- Luis Ibanez @ Kitware
- Karthik Krishnan @ Kitware
Links: