Difference between revisions of "2009 Summer Project Week WML SEgmentation"

From NAMIC Wiki
Jump to: navigation, search
Line 30: Line 30:
  
 
<h3>Progress</h3>
 
<h3>Progress</h3>
Since winter project week in Utah, we have developed/implemented a WML segmentation algorithm using ITK classes. Subtasks implemented include: (1) a skull stripping algorithm working on T1 weighted images; (2) a fuzzy clustering algorithm for tissue segmentation; (3) a parametric model for gain field correction. All these subtasks are implemented by using ITK. The training step uses AdaBoost and the segmenation step uses a support vector machine.  
+
Since winter project week in Utah, we have developed/implemented a WML segmentation algorithm using ITK classes. Subtasks implemented include: (1) a skull stripping algorithm working on T1 weighted images; (2) a fuzzy clustering algorithm for tissue segmentation; (3) a parametric model for gain field correction. All of these subtasks are implemented by using ITK. The training step uses AdaBoost and the segmenation step uses a support vector machine.  
  
 
</div>
 
</div>

Revision as of 10:38, 20 July 2009

Home < 2009 Summer Project Week WML SEgmentation


Key Investigators

  • UNC: Minjeong Kim, Dinggang Shen
  • GE : Xiaodong Tao, Jim Miller

Objective

We will continue developing and testing the white matter lesion segmentation algorithm implemented using ITK. The goal is to have an initial version ready by the end of the week that can be distributed within NA-MIC community for more extensive testing.

Approach, Plan

We will develop a Slicer module for the white matter lesion segmentation algorithm. Base line results and test will be generated.

Progress

Since winter project week in Utah, we have developed/implemented a WML segmentation algorithm using ITK classes. Subtasks implemented include: (1) a skull stripping algorithm working on T1 weighted images; (2) a fuzzy clustering algorithm for tissue segmentation; (3) a parametric model for gain field correction. All of these subtasks are implemented by using ITK. The training step uses AdaBoost and the segmenation step uses a support vector machine.

References