Difference between revisions of "Projects:RegistrationEvaluation"

From NAMIC Wiki
Jump to: navigation, search
Line 52: Line 52:
 
[[Image:itk_fixed_volume_006.png|400px]]
 
[[Image:itk_fixed_volume_006.png|400px]]
  
== Method 1: 3D Registration ==
+
==== Slicer3 RegisterImages ====
  
The problem can be alleviated by 3D registration between a corrupted volume with and the b0 volume, in which we assume the artifact
+
Work in progress.
 +
 
 +
==== IRTK ====
 +
 
 +
Work in progress.
 +
 
 +
== Method 2: 3D Registration ==
 +
 
 +
The problem can be alleviated by 3D registration between a corrupted volume and the b0 volume, in which we assume the artifact
 
is not present.
 
is not present.
  
Line 62: Line 70:
  
 
==== ITK ====
 
==== ITK ====
 +
 +
Work in progress.
 +
 +
==== Slicer3 RegisterImages ====
 +
 +
Work in progress.
 +
 +
==== IRTK ====
  
 
Work in progress.
 
Work in progress.
  
 
= Testbed =
 
= Testbed =

Revision as of 00:54, 7 October 2009

Home < Projects:RegistrationEvaluation

Evaluation of Registration

We are interested in comparing existing registration packages to determine how registration in Slicer3 can be improved. This work focuses on examining various packages researchers are currently using for registration and comparing results on a set of examples representative of common registration tasks. Finally, we propose the development of a testbed, where registration packages can be compared and parameters suitable for a given domain (e.g. multi-modal brain registration) can be determined.

Registration Packages

The following are current registration packages being considered for this project.

ITK

http://itk.org/.

http://public.kitware.com/Wiki/ITK_Image_Registration.

Slicer3 RegisterImages

http://www.slicer.org/slicerWiki/index.php/Modules:RegisterImages-Documentation-3.4.

IRTK (Rview)

http://www.doc.ic.ac.uk/~dr/software/usage.html.

Example 1: Fixing Artifacts in DWI

The DWI data consists of 13 volumes -- a b0 and 12 gradient directions. This process was conducted 3 times per patient for a total of 39 volumes. The image below shows a particular slice in all 12 gradient directions and all 3 scans where the artifacts can clearly be seen in some of the gradient directions.

Orig all.png

Method 1: Slice by Slice 2D Registration

The problem can be alleviated by 2D registration between slices of a corrupted volume with the corresponding slice from the b0 volume, in which we assume the artifact is not present.

Affine Registration

Here we will restrict our investigation to affine transformations between images. We now consider different registration packages applied to this problem.

ITK

Using ITK modules, we wrote an application to perform 2D affine transformation with the following parameters:

Similarity Metric: MattesMutualInformationImageToImageMetric with 24 bins and 10000 samples per bin.
Interpolation: LinearInterpolateImageFunction
Optimization: RegularStepGradientDescentOptimizer with a minimum step length of 0.001, a maximum step length of 1.0, 200 iterations, and a relaxation factor of 0.8.

Itk reg.png

Itk fixed volume 006.png

Slicer3 RegisterImages

Work in progress.

IRTK

Work in progress.

Method 2: 3D Registration

The problem can be alleviated by 3D registration between a corrupted volume and the b0 volume, in which we assume the artifact is not present.

Affine Registration

Here we will restrict our investigation to an affine transformation between images. We now consider different registration packages applied to this problem.

ITK

Work in progress.

Slicer3 RegisterImages

Work in progress.

IRTK

Work in progress.

Testbed