Difference between revisions of "Projects:TractLongitudinalDTI"
Line 58: | Line 58: | ||
== Experiments with Huntington's data == | == Experiments with Huntington's data == | ||
− | During the NAMIC Winter project week, we worked on registering subjects with Huntington's disease in the same coordinate space as control subjects. We then applied the above framework [http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6235829&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6235829 Sharma et al. ISBI'12] to quantify the differences in normal expected aging versus the accelerated white matter changes expected in HD. Details of the data pre-processing steps and image registration are available on the [http://www.na-mic.org/Wiki/index.php/2012_Winter_Project_Week:_DTI_Change_Modeling Winter AHM page]. Some results are summarized here. | + | During the NAMIC Winter project week, we worked on registering subjects with Huntington's disease in the same coordinate space as control subjects. We then applied the above framework [http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6235829&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6235829 Sharma et al. ISBI'12] to quantify the differences in normal expected aging versus the accelerated white matter changes expected in HD. Details of the data pre-processing steps and image registration are available on the [http://www.na-mic.org/Wiki/index.php/2012_Winter_Project_Week:_DTI_Change_Modeling Winter AHM page]. Some results are summarized here for FA value along the genu tract. |
Two subjects- one being a HD patient (10027) with a high burden factor (higher factor value (of factor 12) implying that the subjects is closer to the onset) and the other being a control subject (10004) are chosen for concept demonstration. Both have a similar baseline scan age (42 and 43 years respectively) as well as a similar time separation between follow up scans. This allows an intuitive comparison of the estimated growth trajectories. | Two subjects- one being a HD patient (10027) with a high burden factor (higher factor value (of factor 12) implying that the subjects is closer to the onset) and the other being a control subject (10004) are chosen for concept demonstration. Both have a similar baseline scan age (42 and 43 years respectively) as well as a similar time separation between follow up scans. This allows an intuitive comparison of the estimated growth trajectories. | ||
Line 64: | Line 64: | ||
{| border="0" style="background:transparent;" | {| border="0" style="background:transparent;" | ||
− | |[[Image:ORIG_hd_cn.png|thumb|300px|center|FA curves (middle clipped portions) for one HD case (10027) and one control case (10004). Visual inspection clearly shows the huge decrease relative to the Control in the HD subject. On the other hand, the control shows normal expected decrease due to aging. Red-timepoint 1, Green-timepoint 2, Blue-timepoint 3. The left is HD case and the right plot is Control.]] | + | |[[Image:ORIG_hd_cn.png|thumb|300px|center|FA curves corresponding to the genu tract (middle clipped portions) for one HD case (10027) and one control case (10004). Visual inspection clearly shows the huge decrease relative to the Control in the HD subject. On the other hand, the control shows normal expected decrease due to aging. Red-timepoint 1, Green-timepoint 2, Blue-timepoint 3. The left is HD case and the right plot is Control.]] |
|[[Image:HD_vs_CN_3d.png|thumb|300px|center|The red trajectory corresponds the the HD subjects while the blue is a control subject with healthy aging. HD patient clearly shows a much sharper FA decrease along time than the Control.]] | |[[Image:HD_vs_CN_3d.png|thumb|300px|center|The red trajectory corresponds the the HD subjects while the blue is a control subject with healthy aging. HD patient clearly shows a much sharper FA decrease along time than the Control.]] | ||
|[[Image:HD_vs_CN_params.png|thumb|300px|center|The estimated model parameters (Red-HD case, Blue-Control case) for the two subjects. The top plot is the rate of change per unit time, per unit FA value. The middle plot is the function asymptote and the last plot is the common baseline curve estimation for providing a common reference frame for model estimation and comparison. The asymptote clearly shows a much lower FA range for HD when compared to the Control which already shows promising early prediction capabilities for HD cases where white matter decay is much faster than healthy patients. Also, a higher per unit rate of change quantifies the sharper FA decrease compared to control.]] | |[[Image:HD_vs_CN_params.png|thumb|300px|center|The estimated model parameters (Red-HD case, Blue-Control case) for the two subjects. The top plot is the rate of change per unit time, per unit FA value. The middle plot is the function asymptote and the last plot is the common baseline curve estimation for providing a common reference frame for model estimation and comparison. The asymptote clearly shows a much lower FA range for HD when compared to the Control which already shows promising early prediction capabilities for HD cases where white matter decay is much faster than healthy patients. Also, a higher per unit rate of change quantifies the sharper FA decrease compared to control.]] | ||
Line 71: | Line 71: | ||
This is a preliminary concept demonstration showing that the framework allows us to do patient-specific change modeling of serial HD data of a single patient given discrete-time diffusion curves. | This is a preliminary concept demonstration showing that the framework allows us to do patient-specific change modeling of serial HD data of a single patient given discrete-time diffusion curves. | ||
− | |||
= References = | = References = |
Revision as of 11:27, 19 August 2012
Home < Projects:TractLongitudinalDTIBack to Utah 2 Algorithms
Ongoing Work (Updated 10/02/2011)
Tract-based longitudinal modeling of DTI data
This project develops a methodology to explore subject-specific, DTI data obtained from brain's white matter tracts, available at multiple but often sparsely present timepoints. The challenge is to develop a continuous spatio-temporal growth model, given discrete 4D DWI images. This would enable comparison of growth trajectories across subjects and along tracts which are biologically of interest in developmental and pathological changes.
Background
We use the arc length parametrization scheme initially proposed by Corouge et al. It represents white matter fiber tracts obtained via streamline tractography in the brain's atlas tensor image as a function of arc length. (Atlas construction uses unbiased atlas building schemes followed by back transformations to subjects' DTI images to obtain identical fiber tract geometry across subjects, populated with subject specific diffusion data). We use the mean diffusion scalar invariants derived from these individual fiber bundle cross sections, as our input longitudinal diffusion profiles.
Subject-specific spatiotemporal continuous growth model
We propose the use of Verhulst-Pearl logistic equation to capture temporal changes, while using a non-parametric kernel along arc length to account for biologically motivated functional along-tract relationship in the diffusion data.
From the definition of the logistic function, the parameter r represents the growth rate of the diffusion invariant and the parameter K represents the asymptote value. The overall function shape intuitively follows the growth pattern we expect to see during brain maturation. The diffusion invariants start with an initial diffusion profile along tract, and have a non linear temporal growth trajectory showing maximum changes in early childhood and then slowing down or almost saturating at a certain age. (For instance, observed diffusion changes are much more in neonates than in an adult brain). The temporal trajectories may also differ along the tract's length giving localized changes. Since our method gives us continuous along-tract, growth trajectories all along time, we can compare subjects with respect to differences in diffusion profiles at birth, growth rates at any given age as well as the asymptote saturation values. This gives us important information to understand delayed or abnormal brain maturation by comparing a normative growth surface with an individual's or by comparing the model's parameters across subjects.
Results
Below are some results using synthetic data. For more validation results and extension of the framework to jointly estimate individual subject trajectories together with a normative trajectory, refer to Sharma et al. (ISBI '12).
The below images show jointly estimated personalized trajectories for 15 control subjects along with the average growth trajectory. The estimated model parameters for 15 subjects as well as the average trajectory are also shown. The normative trajectory is colored by the local standard deviation. It points to the fact that despite individual variability in the maturation process, there is a strong agreement in the asymptote FA values seen around a gestational age of 2.5 years indicating a relative stabilization of the white matter changes across subjects. The framework thus quantifies patient-specific changes in serial diffusion data given discrete-time diffusion curves.
Experiments with Huntington's data
During the NAMIC Winter project week, we worked on registering subjects with Huntington's disease in the same coordinate space as control subjects. We then applied the above framework Sharma et al. ISBI'12 to quantify the differences in normal expected aging versus the accelerated white matter changes expected in HD. Details of the data pre-processing steps and image registration are available on the Winter AHM page. Some results are summarized here for FA value along the genu tract.
Two subjects- one being a HD patient (10027) with a high burden factor (higher factor value (of factor 12) implying that the subjects is closer to the onset) and the other being a control subject (10004) are chosen for concept demonstration. Both have a similar baseline scan age (42 and 43 years respectively) as well as a similar time separation between follow up scans. This allows an intuitive comparison of the estimated growth trajectories.
This is a preliminary concept demonstration showing that the framework allows us to do patient-specific change modeling of serial HD data of a single patient given discrete-time diffusion curves.
References
- Sharma, A., Durrleman, S. , Gilmore, J.H. , Gerig, G. Longitudinal growth modeling of discrete-time functions with application to DTI tract evolution in early neurodevelopment. Proc. of 9th IEEE International Symposium on Biomedical Imaging (ISBI May'12), p.1397-1400.
- Corouge, I., Fletcher, P.T., Joshi, S., Gouttard, S., Gerig, G., 2006. Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis. Med Image Anal, pp. 786-798.
- Goodlett, C.B., Fletcher, P.T., Gilmore, J.H., Gerig, G., 2009. Group analysis of DTI fiber tract statistics with application to neurodevelopment. Neuroimage, pp. S133-142.
Key Investigators
- Utah: Anuja Sharma, Stanley Durrleman, Guido Gerig