Difference between revisions of "DBP2:Queens:PerkStation"
Sidd queens (talk | contribs) m |
Sidd queens (talk | contribs) |
||
Line 19: | Line 19: | ||
In clinical mode, it enables to perform an image-guided percutaneous needle biopsies. The workflow in clinical mode consists of four steps: | In clinical mode, it enables to perform an image-guided percutaneous needle biopsies. The workflow in clinical mode consists of four steps: | ||
− | 1) Calibration: The objective of this step is to register the image overlay device with patient/phantom lying on scanner table. In this stage, the software sends the image to the secondary device, in correct physical dimensions. The secondary monitor is mounted with a semi-transparent mirror at 45 degree angle. Thus, the image displayed on monitor, gets projected on the mirror, and when seen through the mirror, the image appears to be floating on the patient/phantom. Based on how the secondary monitor is mounted w.r.t mirror, a horizontal or vertical flip may be required. Once correct flip arrangement in chosen, the image as seen on SLICER's slice viewer display should correspond to what is being seen through the mirror. Now the software enables the user who could be physician to translate/rotate the image as seen through the mirror, so that it aligns with the fiducials mounted/strapped on patient/phantom to achieve registration. This fiducial alignment achieves in-plane registration. For registration in z-plane, the image projection plane should be coincident with the laser-guide plane, which is also the plane of acquisition. | + | ''1) Calibration'': The objective of this step is to register the image overlay device with patient/phantom lying on scanner table. In this stage, the software sends the image to the secondary device, in correct physical dimensions. The secondary monitor is mounted with a semi-transparent mirror at 45 degree angle. Thus, the image displayed on monitor, gets projected on the mirror, and when seen through the mirror, the image appears to be floating on the patient/phantom. Based on how the secondary monitor is mounted w.r.t mirror, a horizontal or vertical flip may be required. Once correct flip arrangement in chosen, the image as seen on SLICER's slice viewer display should correspond to what is being seen through the mirror. Now the software enables the user who could be physician to translate/rotate the image as seen through the mirror, so that it aligns with the fiducials mounted/strapped on patient/phantom to achieve registration. This fiducial alignment achieves in-plane registration. For registration in z-plane, the image projection plane should be coincident with the laser-guide plane, which is also the plane of acquisition. |
− | 2) Planning: Once the system is calibrated, and registered with patient, the software moves to next step. In this step, the entry and target points are given by mouse-clicks. The software calculates the insertion angle w.r.t vertical and insertion depth. | + | ''2) Planning'': Once the system is calibrated, and registered with patient, the software moves to next step. In this step, the entry and target points are given by mouse-clicks. The software calculates the insertion angle w.r.t vertical and insertion depth. |
− | 3) Insertion | + | ''3) Insertion'' |
− | 4) Validation | + | ''4) Validation'' |
* '''Training mode''' | * '''Training mode''' |
Revision as of 20:15, 28 November 2008
Home < DBP2:Queens:PerkStation[[Image:]] [[Image:]]
Back to JHU DBP 2
Contents
PERK Station (Image overlay to perform/train image-guided needle interventions)
Objective:
The objective of this project (PERK Station) is to develop a end-to-end solution implemented as a Slicer 3 module to assist in performing/training for image-guided percutaneous needle interventions. The software, along-with its hardware, overlays the image (CT/MR) acquired on the patient/phantom. The physician/trainee looks at the patient/phantom through the mirror showing the image overlay and the CT/MR image appears to be floating inside the body with the correct size and position, as if the physician/trainee had 2D ‘X-ray vision’.
Description:
The PERK Station comprises of image overlay, laser overlay, and standard tracked freehand navigation in a single suite. The end-to-end solution software module along-with its hardware, operates in two modes: a) Clinical b) Training.
- Clinical mode
In clinical mode, it enables to perform an image-guided percutaneous needle biopsies. The workflow in clinical mode consists of four steps:
1) Calibration: The objective of this step is to register the image overlay device with patient/phantom lying on scanner table. In this stage, the software sends the image to the secondary device, in correct physical dimensions. The secondary monitor is mounted with a semi-transparent mirror at 45 degree angle. Thus, the image displayed on monitor, gets projected on the mirror, and when seen through the mirror, the image appears to be floating on the patient/phantom. Based on how the secondary monitor is mounted w.r.t mirror, a horizontal or vertical flip may be required. Once correct flip arrangement in chosen, the image as seen on SLICER's slice viewer display should correspond to what is being seen through the mirror. Now the software enables the user who could be physician to translate/rotate the image as seen through the mirror, so that it aligns with the fiducials mounted/strapped on patient/phantom to achieve registration. This fiducial alignment achieves in-plane registration. For registration in z-plane, the image projection plane should be coincident with the laser-guide plane, which is also the plane of acquisition.
2) Planning: Once the system is calibrated, and registered with patient, the software moves to next step. In this step, the entry and target points are given by mouse-clicks. The software calculates the insertion angle w.r.t vertical and insertion depth.
3) Insertion
4) Validation
- Training mode
In training mode, it provides feedback to trainees in a controlled environment for performing image-guided percutaneous needle interventions. The planning and control software runs on a stand-alone laptop, where we draw a visual guide along the trajectory of insertion, mark the depth of insertion and push this image onto the overlay display.
Progress:
Current deployment/usage:
Software source code:
Software installation instructions:
- Installing Slicer: go to the Slicer3 Install site.
Tutorial (end-to-end)
- Perk Station 'Clinical' mode: LEGOIGTAndMedicalRoboticsTutorial_PhantomPlacementGuide.pdf
Publications
Team
Links
Questions? Feedback?
Contact