Difference between revisions of "Projects:ARRA:SlicerWF:UseCaseScenarios"

From NAMIC Wiki
Jump to: navigation, search
(→‎Use-case MS lesion Assessment: Added scenario description)
 
Line 15: Line 15:
 
# Detailed Scenario is described below
 
# Detailed Scenario is described below
  
'''Step 1 '''
+
'''Step 1 ''' Download Images from Xnat
Download Images from Xnat
+
Convert T1, T2 images into Slicer3 format
  
T1, T2 images in Slicer3 format
+
'''Step 2 ''' (preprocessing):
 
 
'''Step 2 '''(preprocessing):
 
 
Register T2 to T1
 
Register T2 to T1
  
Line 36: Line 34:
 
Intensity Normalization to the "gold standard" image(s) in case of automated runs
 
Intensity Normalization to the "gold standard" image(s) in case of automated runs
  
'''Step 5'''
+
'''Step 5''' Generate EM Segmentation Scene from the template.
Generate EM Segmentation Scene from the template.
 
  
'''Step 6'''
+
'''Step 6''' Load The scene into Slicer3
Load The scene into Slicer3
 
 
 
'''Step 7'''
 
Adjust input parameters if needed.
 
  
 +
'''Step 7''' Adjust input parameters if needed.
 
Train or re-train data for intensity distribution
 
Train or re-train data for intensity distribution
  
'''Step 8'''
+
'''Step 8''' Run EM Segmenter  
Run EM Segmenter
 
 
 
'''Step 9'''
 
 
 
Repeat Steps 5 and 6 if needed
 
 
 
'''Step 10'''
 
 
 
Save EM Segmented Label Map Volume with Feducials' coordinates
 
  
'''Step 11'''
+
'''Step 9''' Repeat Steps 7 and 8 if needed
  
Visual Lesion Assessment
+
'''Step 10''' Save EM Segmented Label Map Volume with Feducials' coordinates
  
'''Step 12'''  
+
'''Step 11''' Visual Lesion Assessment
  
Upload Results to XNat
+
'''Step 12''' Upload Results to XNat
  
 
=Use-case COPD=
 
=Use-case COPD=

Latest revision as of 22:27, 11 December 2009

Home < Projects:ARRA:SlicerWF:UseCaseScenarios
Back to SPINE ARRA page

Overview

  • Oct-20-2009
  • Meeting with Charles and Alex. Discussed following use-case scenario:
    • Data lives in XNAT
    • Black box processing pipeline applied to data
      • Results back to XNAT after QC for completeness
      • MRML file gets autogenerated
    • Data loaded into Slicer for interactive editing of label maps as QC
    • Results loaded back into XNAT

Use-case MS lesion Assessment

  1. Workflow "blackbox" generates lesion maps along with lesion coordinates files
  2. Human Interaction module loads image volumes into Slicer with fiduciary markers for lesion assessment
  3. Detailed Scenario is described below

Step 1 Download Images from Xnat Convert T1, T2 images into Slicer3 format

Step 2 (preprocessing): Register T2 to T1

Step 3 (preprocessing)

Skull Stripping of T1 and T2_registered images

Step 3A . Generation of Brainmask/ICC

Step 3B. Manual Editing if Brainmask/ICC

Step 3C. Skull Stripping per se

Step 4 (preprocessing) Optional Intensity Normalization to the "gold standard" image(s) in case of automated runs

Step 5 Generate EM Segmentation Scene from the template.

Step 6 Load The scene into Slicer3

Step 7 Adjust input parameters if needed. Train or re-train data for intensity distribution

Step 8 Run EM Segmenter

Step 9 Repeat Steps 7 and 8 if needed

Step 10 Save EM Segmented Label Map Volume with Feducials' coordinates

Step 11 Visual Lesion Assessment

Step 12 Upload Results to XNat

Use-case COPD

WF IntegrationDiagram General.jpg

External use-cases