Difference between revisions of "DBP2:UNC:Local Cortical Thickness Pipeline"
From NAMIC Wiki
Line 15: | Line 15: | ||
Input: RAW images (T1-weighted, T2-weighted, PD-weighted images) | Input: RAW images (T1-weighted, T2-weighted, PD-weighted images) | ||
− | * '''1. Tissue segmentation''' | + | * '''1. Individual pipeline''' |
− | ** Probabilistic atlas-based automatic tissue segmentation via an Expectation-Maximization scheme | + | ** '''1.1. Tissue segmentation''' |
− | ** Tool: itkEMS (UNC Slicer3 external module) | + | *** Probabilistic atlas-based automatic tissue segmentation via an Expectation-Maximization scheme |
− | * '''2. Atlas-based ROI segmentation:''' subcortical structures, lateral ventricles, parcellation | + | *** Tool: itkEMS (UNC Slicer3 external module) |
− | ** 2.1. Skull stripping using previously computed tissue segmentation label image | + | ** '''1.2. Atlas-based ROI segmentation:''' subcortical structures, lateral ventricles, parcellation |
− | *** Tool: SegPostProcess (UNC Slicer3 external module) | + | *** 1.2.1. Skull stripping using previously computed tissue segmentation label image |
− | ** 2.2. T1-weighted atlas deformable registration | + | **** Tool: SegPostProcess (UNC Slicer3 external module) |
− | *** B-spline pipeline registration | + | *** 1.2.2. T1-weighted atlas deformable registration |
− | *** Tool: RegisterImages (Slicer3 module) | + | **** B-spline pipeline registration |
− | ** 2.3. Applying transformations to the structures | + | **** Tool: RegisterImages (Slicer3 module) |
− | *** Tool: ResampleVolume2 (Slicer3 module) | + | *** 1.2.3. Applying transformations to the structures |
− | * '''3. White matter map creation''' | + | **** Tool: ResampleVolume2 (Slicer3 module) |
− | ** Brainstem and cerebellum extraction | + | ** '''1.3. White matter map creation''' |
− | ** Adding subcortical structures except amygdala and hippocampus | + | *** Brainstem and cerebellum extraction |
− | ** Tool: ImageMath (UNC Slicer3 external module) | + | *** Adding subcortical structures except amygdala and hippocampus |
− | * '''4. White matter map post-processing''' | + | *** Tool: ImageMath (UNC Slicer3 external module) |
− | ** Largest component computation | + | ** '''1.4. White matter map post-processing''' |
− | ** Smoothing: Level set smoothing or weighted average filter | + | *** Largest component computation |
− | ** Connectivity enforcement (6-connectivity) | + | *** Smoothing: Level set smoothing or weighted average filter |
− | ** White matter filling | + | *** Connectivity enforcement (6-connectivity) |
− | ** Tool: WMSegPostProcess (UNC Slicer3 external module) | + | *** White matter filling |
− | * '''5. Genus zero white matter map image and surface creation''' | + | *** Tool: WMSegPostProcess (UNC Slicer3 external module) |
− | ** Tool: GenusZeroImageFilter (UNC Slicer3 external module) | + | ** '''1.5. Genus zero white matter map image and surface creation''' |
− | * '''6. White matter surface inflation''' | + | *** Tool: GenusZeroImageFilter (UNC Slicer3 external module) |
− | ** Iterative smoothing using relaxation operator (considering average vertex) and L2 norm of the mean curvature as a stopping criterion | + | ** '''1.6. White matter surface inflation''' |
− | ** Iteration stopped if vertices that have too high curvature (some extremities) | + | *** Iterative smoothing using relaxation operator (considering average vertex) and L2 norm of the mean curvature as a stopping criterion |
− | ** Tool: MeshInflation (UNC Slicer3 external module) | + | *** Iteration stopped if vertices that have too high curvature (some extremities) |
− | * '''6 bis(Optional). White matter image fixing if necessary''' | + | *** Tool: MeshInflation (UNC Slicer3 external module) |
− | ** Correction of the white matter map image (corresponding to vertices that have high curvature) with connectivity enforcement | + | ** '''1.6 bis(Optional). White matter image fixing if necessary''' |
− | ** Tool: FixImage (UNC Slicer3 external module) | + | *** Correction of the white matter map image (corresponding to vertices that have high curvature) with connectivity enforcement |
− | ** Go back to step 5 | + | *** Tool: FixImage (UNC Slicer3 external module) |
− | * '''7. Gray matter map creation''' | + | *** Go back to step 5 |
− | ** Adding genus zero white matter map to gray matter segmentation (without cerebellum and brainstem) | + | ** '''1.7. Gray matter map creation''' |
− | ** Tool: ImageMath | + | *** Adding genus zero white matter map to gray matter segmentation (without cerebellum and brainstem) |
− | * '''8. Label map creation''' | + | *** Tool: ImageMath |
− | ** Label map creation for cortical thickness computation (WM + GM + CSF) | + | ** '''1.8. Label map creation''' |
− | ** Tool: ImageMath | + | *** Label map creation for cortical thickness computation (WM + GM + CSF) |
− | * '''9. Cortical thickness''' | + | *** Tool: ImageMath |
− | ** Asymmetric local cortical thickness or Laplacian cortical thickness | + | ** '''1.9. Cortical thickness''' |
− | ** Tool: UNCCortThick or measureThicknessFilter (UNC Slicer3 external modules) | + | *** Asymmetric local cortical thickness or Laplacian cortical thickness |
− | * '''10. Sulcal depth''' | + | *** Tool: UNCCortThick or measureThicknessFilter (UNC Slicer3 external modules) |
− | ** Sulcal depth computation using genus zero surface and inflated one | + | ** '''1.10. Sulcal depth''' |
− | ** Tool: MeshMath (UNC module) | + | *** Sulcal depth computation using genus zero surface and inflated one |
− | * '''11. Particles initialization for cortical correspondence''' | + | *** Tool: MeshMath (UNC module) |
− | ** Initializing particles on inflated surface using parcellation map and genus zero surface | + | ** '''1.11. Particles initialization for cortical correspondence''' |
− | ** Tools: ParticleInitializer (UNC Slicer3 external modules) | + | *** Initializing particles on inflated surface using parcellation map and genus zero surface |
− | * ''' | + | *** Tools: ParticleInitializer (UNC Slicer3 external modules) |
+ | * '''1.2. Cortical correspondence''' | ||
** Correspondence on inflated surfaces using particle system | ** Correspondence on inflated surfaces using particle system | ||
** Tools: ParticleCorrespondencePreProcessing, ParticleCorrespondence, ParticleCorrespondencePostProcessing (UNC Slicer3 external modules) | ** Tools: ParticleCorrespondencePreProcessing, ParticleCorrespondence, ParticleCorrespondencePostProcessing (UNC Slicer3 external modules) | ||
− | * ''' | + | * '''1.3. Group statistical analysis''' |
** Tool: QDEC Slicer module or StatNonParamPDM | ** Tool: QDEC Slicer module or StatNonParamPDM | ||
Revision as of 21:15, 15 December 2009
Home < DBP2:UNC:Local Cortical Thickness PipelineBack to UNC Cortical Thickness Roadmap
Contents
Objective
We would like to create end-to-end applications within Slicer3 allowing individual and group analysis of mesh-based local cortical thickness.
Pipeline overview
Input: RAW images (T1-weighted, T2-weighted, PD-weighted images)
- 1. Individual pipeline
- 1.1. Tissue segmentation
- Probabilistic atlas-based automatic tissue segmentation via an Expectation-Maximization scheme
- Tool: itkEMS (UNC Slicer3 external module)
- 1.2. Atlas-based ROI segmentation: subcortical structures, lateral ventricles, parcellation
- 1.2.1. Skull stripping using previously computed tissue segmentation label image
- Tool: SegPostProcess (UNC Slicer3 external module)
- 1.2.2. T1-weighted atlas deformable registration
- B-spline pipeline registration
- Tool: RegisterImages (Slicer3 module)
- 1.2.3. Applying transformations to the structures
- Tool: ResampleVolume2 (Slicer3 module)
- 1.2.1. Skull stripping using previously computed tissue segmentation label image
- 1.3. White matter map creation
- Brainstem and cerebellum extraction
- Adding subcortical structures except amygdala and hippocampus
- Tool: ImageMath (UNC Slicer3 external module)
- 1.4. White matter map post-processing
- Largest component computation
- Smoothing: Level set smoothing or weighted average filter
- Connectivity enforcement (6-connectivity)
- White matter filling
- Tool: WMSegPostProcess (UNC Slicer3 external module)
- 1.5. Genus zero white matter map image and surface creation
- Tool: GenusZeroImageFilter (UNC Slicer3 external module)
- 1.6. White matter surface inflation
- Iterative smoothing using relaxation operator (considering average vertex) and L2 norm of the mean curvature as a stopping criterion
- Iteration stopped if vertices that have too high curvature (some extremities)
- Tool: MeshInflation (UNC Slicer3 external module)
- 1.6 bis(Optional). White matter image fixing if necessary
- Correction of the white matter map image (corresponding to vertices that have high curvature) with connectivity enforcement
- Tool: FixImage (UNC Slicer3 external module)
- Go back to step 5
- 1.7. Gray matter map creation
- Adding genus zero white matter map to gray matter segmentation (without cerebellum and brainstem)
- Tool: ImageMath
- 1.8. Label map creation
- Label map creation for cortical thickness computation (WM + GM + CSF)
- Tool: ImageMath
- 1.9. Cortical thickness
- Asymmetric local cortical thickness or Laplacian cortical thickness
- Tool: UNCCortThick or measureThicknessFilter (UNC Slicer3 external modules)
- 1.10. Sulcal depth
- Sulcal depth computation using genus zero surface and inflated one
- Tool: MeshMath (UNC module)
- 1.11. Particles initialization for cortical correspondence
- Initializing particles on inflated surface using parcellation map and genus zero surface
- Tools: ParticleInitializer (UNC Slicer3 external modules)
- 1.1. Tissue segmentation
- 1.2. Cortical correspondence
- Correspondence on inflated surfaces using particle system
- Tools: ParticleCorrespondencePreProcessing, ParticleCorrespondence, ParticleCorrespondencePostProcessing (UNC Slicer3 external modules)
- 1.3. Group statistical analysis
- Tool: QDEC Slicer module or StatNonParamPDM
Download
Brain atlases
Four brain atlases are available on MIDAS and on NITRC:
- Pediatric atlas: http://www.insight-journal.org/midas/item/view/2277
- Adult atlas: http://www.insight-journal.org/midas/item/view/2328
- Elderly atlas: http://www.insight-journal.org/midas/item/view/2330
- Primate atlas: http://www.insight-journal.org/midas/item/view/2283
Pipeline validation
Analysis on a small pediatric dataset
Tests will be computed on a small pediatric dataset which includes 2 year-old and 4 year-old cases.
- 16 autistic cases
- 1 developmental delay
- 3 normal control
Comparison to state of the art
We would like to compare our pipeline with FreeSurfer. We will thus perform a regional statistical analysis using Pearson's correlation coefficient on an adult dataset (FreeSurfer's publicly available tutorial dataset) including 40 cases.
Planning
Done
Steps 1 to 10:
- Development of UNC Slicer3 modules (except itkEMS)
- Modules applied on small pediatric dataset from the Autism study
In progress
- Step 6: Parameter adjustment on autism dataset to fix bad vertices
- Step 11: Particle initialization
- Step 12: Particle correspondence testing with pediatric surfaces
- Automatization of several steps
- Symmetric atlases generation (pediatric, adult, elderly):
- T1-weighted atlas
- Tissue segmentation probability maps
- Subcortical structures probability maps
Future work
- Full pipeline working on pediatric dataset
- Workflow for individual analysis as a Slicer3 high-level module using BatchMake
- Workflow for group analysis
References
- I. Oguz, M. Niethammer, J. Cates, R. Whitaker, T. Fletcher, C. Vachet, and M. Styner, Cortical Correspondence with Probabilistic Fiber Connectivity, Information Processing in Medical Imaging, IPMI 2009, LNCS, in print.
- H.C. Hazlett, C. Vachet, C. Mathieu, M. Styner, J. Piven, Use of the Slicer3 Toolkit to Produce Regional Cortical Thickness Measurement of Pediatric MRI Data, presented at the 8th Annual International Meeting for Autism Research (IMFAR) Chicago, IL 2009.
- C. Mathieu, C. Vachet, H.C. Hazlett, G. Geric, J. Piven, and M. Styner, ARCTIC – Automatic Regional Cortical ThICkness Tool, UNC Radiology Research Day 2009 abstract
- C. Vachet, H.C. Hazlett, M. Niethammer, I. Oguz, J.Cates, R. Whitaker, J. Piven, M. Styner, Mesh-based Local Cortical Thickness Framework, UNC Radiology Research Day 2009 abstract