Difference between revisions of "Projects:MultiTensorTractography"

From NAMIC Wiki
Jump to: navigation, search
Line 11: Line 11:
 
perform tractography within a filter framework.  Starting from a seed point,
 
perform tractography within a filter framework.  Starting from a seed point,
 
fiber is traced to its termination using an unscented Kalman filter to
 
fiber is traced to its termination using an unscented Kalman filter to
  simultaneously fit the local model and propagate in the most consistent
+
simultaneously fit the local model and propagate in the most consistent
  direction.  Further, we modify the Kalman filter to enforce model
+
direction.  Further, we modify the Kalman filter to enforce model, i.e., positive eigenvalues and convex weights.  Despite the
  constraints, i.e., positive eigenvalues and convex weights.  Despite the
+
presence of noise and uncertainty, this provides a causal estimate of the
  presence of noise and uncertainty, this provides a causal estimate of the
+
local structure at each point along the fiber.
  local structure at each point along the fiber.
 
 
    
 
    
  Synthetic experiments demonstrate that this approach significantly improves
+
Synthetic experiments demonstrate that this approach significantly improves
  the angular resolution at crossings and branchings while consistently
+
the angular resolution at crossings and branchings while consistently
  estimating the mixture weights.  ''In vivo'' experiments confirm the
+
estimating the mixture weights.  ''In vivo'' experiments confirm the
  ability to trace out fibers in areas known to contain such crossing and
+
ability to trace out fibers in areas known to contain such crossing and
  branching while providing inherent path regularization.
+
branching while providing inherent path regularization.

Revision as of 17:18, 13 May 2010

Home < Projects:MultiTensorTractography

Multi Tensor Tractography

We describe a unified framework to simultaneously estimate multiple fibers at each location and perform tractography. Existing techniques estimate the local fiber orientation at each voxel independently so there is no running knowledge of confidence in the estimated fiber model. We formulate fiber tracking as recursive estimation: at each step of tracing the fiber, the current estimate is guided by the previous.

To do this we model the signal as either a weighted mixture of Gaussian tensors or Watson directional functions and perform tractography within a filter framework. Starting from a seed point, fiber is traced to its termination using an unscented Kalman filter to simultaneously fit the local model and propagate in the most consistent direction. Further, we modify the Kalman filter to enforce model, i.e., positive eigenvalues and convex weights. Despite the presence of noise and uncertainty, this provides a causal estimate of the local structure at each point along the fiber.

Synthetic experiments demonstrate that this approach significantly improves the angular resolution at crossings and branchings while consistently estimating the mixture weights. In vivo experiments confirm the ability to trace out fibers in areas known to contain such crossing and branching while providing inherent path regularization.