Difference between revisions of "2011 Summer Project Week Stenosis Detector"

From NAMIC Wiki
Jump to: navigation, search
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
<gallery>
 
<gallery>
Image:PW-SLC2011.png
+
Image:PW-MIT2011.png|[[2011_Summer_Project_Week#Projects|Projects List]]
 +
Image:VesselnessFilter.png| Vesselness filter
 
</gallery>
 
</gallery>
 +
  
 
==Key Investigators==
 
==Key Investigators==

Revision as of 16:58, 20 June 2011

Home < 2011 Summer Project Week Stenosis Detector


Key Investigators

  • University of Heidelberg, Germany: Suares Tamekue
  • UPenn: Daniel Haehn
  • Orobix, Italy: Luca Antiga
  • SPL: Ron Kikinis

Objective

We are developing a stenosis detector based on VMTK in Slicer 4. The goal is to be able to visualize stenosis after a vessel segmentation using a wizard-based interface.




Approach, Plan

Our approach for developing the stenosis detector is: first vessel enhancement, level-set segmentation, network extraction and then quantification and visualization of stenosis.

The tool will be evaluated on datasets.

Progress


Delivery Mechanism

This work will be delivered to the NA-MIC Kit as a (please select the appropriate options by noting YES against them below)

  1. ITK Module
  2. Slicer Module
    1. Built-in
    2. Extension -- commandline
    3. Extension -- loadable [X]
  3. Other (Please specify)

References

  • Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A and Steinman DA. An image-based modeling framework for patient-specific computational hemodynamics. Medical and Biological Engineering and Computing, 46: 1097-1112, Nov 2008.
  • D. Hähn. Integration of the vascular modeling toolkit in 3d slicer. SPL, 04 2009. Available online at http://www.spl.harvard.edu/publications/item/view/1728.
  • D. Hähn. Centerline Extraction of Coronary Arteries in 3D Slicer using VMTK based Tools. Master's Thesis. Department of Medical Informatics, University of Heidelberg, Germany. Feb 2010.
  • Piccinelli M, Veneziani A, Steinman DA, Remuzzi A, Antiga L (2009) A framework for geometric analysis of vascular structures: applications to cerebral aneurysms. IEEE Trans Med Imaging. In press.