Difference between revisions of "Projects:KPCA LLE KLLE ShapeAnalysis"

From NAMIC Wiki
Jump to: navigation, search
Line 3: Line 3:
 
kernel locally linear embedding (KLLE).
 
kernel locally linear embedding (KLLE).
  
=== Shape Representation  ===
+
== Shape Representation  ==
 
The surfaces are represented as the zero level set of a signed distance function and shape learning is performed on the embeddings of these shapes. We carry out some experiments to see how well each of these methods can represent a shape, given the training set. We tested the performance of these methods on shapes of left caudate nucleus and left hippocampus. The training set of left caudate nucleus consisted of 26 data sets and the test set contained 3 volumes. Error between a particular shape representation and
 
The surfaces are represented as the zero level set of a signed distance function and shape learning is performed on the embeddings of these shapes. We carry out some experiments to see how well each of these methods can represent a shape, given the training set. We tested the performance of these methods on shapes of left caudate nucleus and left hippocampus. The training set of left caudate nucleus consisted of 26 data sets and the test set contained 3 volumes. Error between a particular shape representation and
 
ground truth was calculated by computing the number of mislabeled voxels using each of the methods. Figure 1 gives the error
 
ground truth was calculated by computing the number of mislabeled voxels using each of the methods. Figure 1 gives the error

Revision as of 16:27, 2 April 2007

Home < Projects:KPCA LLE KLLE ShapeAnalysis

Objective

To compare various shape representation techniques like linear PCA (LPCA), kernel PCA (KPCA), locally linear embedding (LLE) and kernel locally linear embedding (KLLE).

Shape Representation

The surfaces are represented as the zero level set of a signed distance function and shape learning is performed on the embeddings of these shapes. We carry out some experiments to see how well each of these methods can represent a shape, given the training set. We tested the performance of these methods on shapes of left caudate nucleus and left hippocampus. The training set of left caudate nucleus consisted of 26 data sets and the test set contained 3 volumes. Error between a particular shape representation and ground truth was calculated by computing the number of mislabeled voxels using each of the methods. Figure 1 gives the error using each of the methods. Similar tests were done on a training set of 20 hippocampus data with 3 test volumes. Figure 2 gives the error table for each of the methods [1].

Figure 1: Table gives the number of mislabelled voxels for each of the methods for left caudate nucleus
Figure 2: Figure 1: Table gives the number of mislabelled voxels for each of the methods for left hippocampus

References

  • [1] Y. Rathi, S. Dambreville, and A. Tannenbaum. "Comparative Analysis of Kernel Methods for Statistical Shape Learning", In CVAMIA held in conjunction with ECCV, 2006.

Key Investigators

  • Core 1:
    • Georgia Tech: Yogesh Rathi, Samuel Dambreville, Allen Tannenbaum

Links: