Difference between revisions of "2017 Winter Project Week/DeepInfer"

From NAMIC Wiki
Jump to: navigation, search
Line 16: Line 16:
  
 
==Background and References==
 
==Background and References==
Deep  learning  models  have  outperformed  some  of  the  previous  state-of-the-art  approaches  in  medical  image analysis.  However, utilizing deep models during image-guided  therapy  procedures  requires  integration  of  several  software  components  which  is  often  a  tedious  taskfor  clinical  researchers.  Hence,  there  is  a  gap  between  the  state-of-the-art  machine  learning  research  and  itsapplication in clinical setup. DeepInfer  enables  3D  Slicer  to  connect  to  a  powerful processing back-end either on the local machine or a remote processing server. Utilizing a repository of pre-trained, task-specific models, DeepInfer allows clinical researchers and biomedical engineers to choose and deploy a model on new data without the need for software development or configuration.
+
Deep  learning  models  have  outperformed  some  of  the  previous  state-of-the-art  approaches  in  medical  image analysis.  However, utilizing deep models during image-guided  therapy  procedures  requires  integration  of  several  software  components  which  is  often  a  tedious  taskfor  clinical  researchers.  Hence,  there  is  a  gap  between  the  state-of-the-art  machine  learning  research  and  itsapplication in clinical setup.  
 +
 
 +
DeepInfer  enables  3D  Slicer  to  connect  to  a  powerful processing back-end either on the local machine or a remote processing server. Utilizing a repository of pre-trained, task-specific models, DeepInfer allows clinical researchers and biomedical engineers to choose and deploy a model on new data without the need for software development or configuration.
  
 
==Project Description==
 
==Project Description==

Revision as of 18:15, 9 January 2017

Home < 2017 Winter Project Week < DeepInfer

Key Investigators

  • Alireza Mehrtash (BWH, UBC)
  • Mehran Pesteie (UBC)
  • Yang (Silvia) Yixin (Tianjin University)
  • Tina Kapur (BWH)
  • Sandy Wells (BWH)
  • Purang Abolmaesumi (UBC)
  • Andriy Fedorov (BWH)

Background and References

Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. However, utilizing deep models during image-guided therapy procedures requires integration of several software components which is often a tedious taskfor clinical researchers. Hence, there is a gap between the state-of-the-art machine learning research and itsapplication in clinical setup.

DeepInfer enables 3D Slicer to connect to a powerful processing back-end either on the local machine or a remote processing server. Utilizing a repository of pre-trained, task-specific models, DeepInfer allows clinical researchers and biomedical engineers to choose and deploy a model on new data without the need for software development or configuration.

Project Description

Objective Approach and Plan Progress and Next Steps
  • Develop the client side as a Slicer extension.
  • Develop the server side.
  • Train a diabetic retinopathy classifier and add the model to the DeepInfer model repository.