Difference between revisions of "EM Tracker HFluxPerI Derivation"

From NAMIC Wiki
Jump to: navigation, search
m (Bolded equations for better readability, and corrected some errors.)
Line 23: Line 23:
 
Place a dipole receiver coil (with effective-area vector Aeff_rcvr_vect measured in square meters) at the observation point Rvect. Scalar HFlux (measured in amperes times meters) through the receiver coil is defined as:
 
Place a dipole receiver coil (with effective-area vector Aeff_rcvr_vect measured in square meters) at the observation point Rvect. Scalar HFlux (measured in amperes times meters) through the receiver coil is defined as:
  
HFlux(Rvect) = Aeff_rcvr_vect .dotproduct. Hvect(Rvect)
+
<b>HFlux(Rvect) = Aeff_rcvr_vect .dotproduct. Hvect(Rvect)</b>
  
 
Substituting for Hvect(Rvect) gives:
 
Substituting for Hvect(Rvect) gives:
  
Hflux(Rvect) = Aeff_rcvr_vect .dotproduct. (Itmtr / (4 pi Rmag^3)) ((3 Runit_vect Runit_vect .dotproduct.) -1) Aeff_tmtr_vect
+
<b>Hflux(Rvect) = Aeff_rcvr_vect .dotproduct. (Itmtr / (4 pi Rmag^3)) ((3 Runit_vect Runit_vect .dotproduct.) -1) Aeff_tmtr_vect</b>
  
 
Dividing by the transmitter current Itmtr, gives scalar HFluxPerI (measured in meters):
 
Dividing by the transmitter current Itmtr, gives scalar HFluxPerI (measured in meters):
  
HfluxPerI(Rvect) = (1 / (4 pi Rmag^3)) Aeff_rcvr_vect .dotproduct. ((3 Runit_vect Runit_vect .dotproduct.) -1) Aeff_tmtr_vect
+
<b>HfluxPerI(Rvect) = (1 / (4 pi Rmag^3)) Aeff_rcvr_vect .dotproduct. ((3 Runit_vect Runit_vect .dotproduct.) -1) Aeff_tmtr_vect</b>
  
 
HFluxPerI is a purely geometrical property of the coils and their relationship in space.
 
HFluxPerI is a purely geometrical property of the coils and their relationship in space.
Line 41: Line 41:
 
The induced voltage Vrcvr (measured in volts) across the receiver coil is:
 
The induced voltage Vrcvr (measured in volts) across the receiver coil is:
  
Vrcvr = -d/dt(Uo  HFluxPerI  Itmtr)
+
<b>Vrcvr(t) = -d/dt(Uo  HFluxPerI  Itmtr(t))</b>
  
 
Uo = pi 4e-07 volts*seconds/(amperes*meters) is the magnetic permeability of free space, usually called mu-nought.
 
Uo = pi 4e-07 volts*seconds/(amperes*meters) is the magnetic permeability of free space, usually called mu-nought.
  
If Itmtr is sinusoidal at frequency F, and the receiver is moving slowly or not at all with respect to the transmitter, we have:
+
If Itmtr(t) is sinusoidal at frequency F, and the receiver is moving slowly or not at all with respect to the transmitter, we have:
  
Itmtr = Itmtr_peak sin(2 pi F)
+
<b>Itmtr(t) = Itmtr_peak sin(2 pi F t)</b>
  
Vrcvr = -Uo  HFluxPerI  Itmtr_peak 2 pi F cos(2 pi F)
+
<b>Vrcvr(t) = Vrcvr_peak cos(2 pi F t)</b>
 +
 
 +
<b>Vrcvr_peak = -Uo  HFluxPerI  Itmtr_peak 2 pi F</b>
 +
 
 +
The minus sign comes from the electromagnetics of induced voltages.

Revision as of 00:05, 19 November 2017

Home < EM Tracker HFluxPerI Derivation

All of the following can be found at (or derived from) https://en.wikipedia.org/wiki/Magnetic_dipole and in classical-electromagnetics textbooks.

We assume that, at the working frequency or frequencies, the wavelength is large compared to the distance between transmitter coil trio and receiver coil trio. This is the quasi-static approximation, which permits us to ignore radiation fields.

We assume that each coil is so small that its shape does not matter, only its size times its number of turns. This is the dipole approximation. Each coil has an effective-area vector, Aeff_vect (measured in square meters) which completely describes a dipole coil's quasi-static magnetic properties.

Consider a single transmitter coil, with effective-area vector Aeff_tmtr_vect. We pass a current Itmtr (measured in amperes) through the transmitter coil, which causes the coil to emit a vector magnetic field Hvect (measured in amperes per meter) which varies depending upon where we observe the magnetic field.

Let Rvect (measured in meters) be the vector from the transmitter coil to the position of the magnetic-field observer. The magnetic field at the observation point is Hvect(Rvect).

We can write Rvect as the product of its scalar magnitude, Rmag (measured in meters), and a unit vector Runit_vect (unitless) in the direction of Rvect:

Rvect = Rmag Runit_vect

The vector magnetic field Hvect (measured in amperes per meter) at the observation point is then:

Hvect(Rvect) = (Itmtr / (4 pi Rmag^3)) (3 Runit_vect (Runit_vect .dotproduct. Aeff_tmtr_vect) - Aeff_tmtr_vect)

This can be written more compactly (being a little free with the notation) as:

Hvect(Rvect) = (Itmtr / (4 pi Rmag^3)) ((3 Runit_vect Runit_vect .dotproduct.) -1) Aeff_tmtr_vect

Place a dipole receiver coil (with effective-area vector Aeff_rcvr_vect measured in square meters) at the observation point Rvect. Scalar HFlux (measured in amperes times meters) through the receiver coil is defined as:

HFlux(Rvect) = Aeff_rcvr_vect .dotproduct. Hvect(Rvect)

Substituting for Hvect(Rvect) gives:

Hflux(Rvect) = Aeff_rcvr_vect .dotproduct. (Itmtr / (4 pi Rmag^3)) ((3 Runit_vect Runit_vect .dotproduct.) -1) Aeff_tmtr_vect

Dividing by the transmitter current Itmtr, gives scalar HFluxPerI (measured in meters):

HfluxPerI(Rvect) = (1 / (4 pi Rmag^3)) Aeff_rcvr_vect .dotproduct. ((3 Runit_vect Runit_vect .dotproduct.) -1) Aeff_tmtr_vect

HFluxPerI is a purely geometrical property of the coils and their relationship in space.

If we replace Rvect with -Rvect, Rmag is unchanged, Runit_vect is replaced by -Runit_vect, and HFluxPerI is unchanged. This is the hemisphere ambiguity.

If we swap Aeff_rcvr_vect and Aeff_tmtr_vect, HFluxPerI is unchanged. This is electromagnetic reciprocity.

The induced voltage Vrcvr (measured in volts) across the receiver coil is:

Vrcvr(t) = -d/dt(Uo HFluxPerI Itmtr(t))

Uo = pi 4e-07 volts*seconds/(amperes*meters) is the magnetic permeability of free space, usually called mu-nought.

If Itmtr(t) is sinusoidal at frequency F, and the receiver is moving slowly or not at all with respect to the transmitter, we have:

Itmtr(t) = Itmtr_peak sin(2 pi F t)

Vrcvr(t) = Vrcvr_peak cos(2 pi F t)

Vrcvr_peak = -Uo HFluxPerI Itmtr_peak 2 pi F

The minus sign comes from the electromagnetics of induced voltages.