Projects:NonparametricSegmentation
From NAMIC Wiki
Home < Projects:NonparametricSegmentation
Introduction and Background
We propose a non-parametric, probabilistic model for the automatic segmentation of medical images, given a training set of images and corresponding label maps. The resulting inference algorithms we develop rely on pairwise registrations between the test image and individual training images. The training labels are then transferred to the test image and fused to compute a final segmentation of the test subject.