DBP3:UCLA

From NAMIC Wiki
Revision as of 20:15, 13 November 2010 by Jack.vanhorn (talk | contribs)
Jump to: navigation, search
Home < DBP3:UCLA
Back to DBP Main

Introduction

What is traumatic brain injury?

An example T1 weighted image from a patient with TBI

Traumatic brain injury, often referred to as TBI, is most often an acute event that results in severe damage to portions of the brain. According to the CDC (United States Centers for Disease Control and Prevention), there are approximately 1.5 million people in the U.S. who suffer from a traumatic brain injury each year. 50,000 people die from TBI each year and 85,000 people suffer long term disabilities. In the U.S., more than 5.3 million people live with disabilities caused by TBI. Patients admitted to a hospital for TBI are included in this count, while those treated in an emergency room or doctor's office are not counted. The causes of TBI are diverse. The top three causes are: car accident, firearms and falls. Firearm injuries are often fatal: 9 out of 10 people die from such injuries. Young adults and the elderly are the age groups at highest risk for TBI. Along with a traumatic brain injury, persons are also susceptible to spinal cord injuries which is another type of traumatic injury that can result out of vehicle crashes, firearms and falls. Prevention of TBI is the best approach since there is no cure or way to reverse brain damage of this kind.

Mechanisms of TBI

Understanding the various mechanisms of TBI can be helpful for the development of robust and reliable computational algorithms for neuroimage data processing. These mechanisms are the highest causes of brain injury: Open head Injury, Closed Head Injury, Deceleration Injuries, Chemical/Toxic, Hypoxia, Tumors, Infections and Stroke.

1. Open Head Injury

   * Results from bullet wounds, etc.
   * Largely focal damage
   * Penetration of the skull
   * Effects can be just as serious as closed brain injury

2. Closed Head Injury

   * Resulting from a slip and fall, motor vehicle crashes, etc.
   * Focal damage and diffuse damage to axons
   * Effects tend to be broad (diffuse)
   * No penetration to the skull

3. Deceleration Injuries (Diffuse Axonal Injury) The skull is hard and inflexible while the brain is soft with the consistency of gelatin. The brain is encased inside the skull. During the movement of the skull through space (acceleration) and the rapid discontinuation of this action when the skull meets a stationary object (deceleration) causes the brain to move inside the skull. The brain moves at a different rate than the skull because it is soft. Different parts of the brain move at different speeds because of their relative lightness or heaviness. The differential movement of the skull and the brain when the head is struck results in direct brain injury, due to diffuse axonal shearing, contusion and brain swelling.

Diffuse axonal shearing: when the brain is slammed back and forth inside the skull it is alternately compressed and stretched because of the gelatinous consistency. The long, fragile axons of the neurons (single nerve cells in the brain and spinal cord) are also compressed and stretched. If the impact is strong enough, axons can be stretched until they are torn. This is called axonal shearing. When this happens, the neuron dies. After a severe brain injury, there is massive axonal shearing and neuron death.

4. Chemical/Toxic

   * Also known as metabolic disorders
   * This occurs when harmful chemicals damage the neurons
   * Chemicals and toxins, e.g. insecticides, solvents, carbon monoxide poisoning, lead poisoning, etc.

5. Hypoxia (Lack of Oxygen)

   * If the blood flow is depleted of oxygen, then irreversible brain injury can occur from anoxia (no oxygen) or hypoxia (reduced oxygen)
   * This condition may be caused by heart attacks, respiratory failure, drops in blood pressure and a low oxygen environment
   * This type of brain injury can result in severe cognitive and memory deficits

6. Tumors

   * Tumors caused by cancer can grow on or over the brain
   * Tumors can cause brain injury by invading the spaces of the brain and causing direct damage
   * Damage can also result from pressure effects around an enlarged tumor
   * Surgical procedures to remove the tumor may also contribute to brain injury

7. Infections

   * The brain and surrounding membranes are very prone to infections if the special blood-brain protective system is breached
   * Viruses and bacteria can cause serious and life-threatening diseases of the brain (encephalitis) and meninges (meningitis) 

8. Stroke

   * If blood flow is blocked through a cerebral vascular accident (stroke), cell death in the area deprived of blood will result
   * If there is bleeding in or over the brain (hemorrhage or hematoma) because of a tear in an artery or vein, loss of blood flow and injury to the brain tissue by the blood will also result in brain damage


Example Neuroimaging Data Sets

Sample images from the three TBI cases

The following cases represent severe instances of TBI scanned using MRI brain imaging techniques. The (zipped) anatomical data files are in NIFTI format while DWI files are in Nrrd format. Additional data from PET and from CT will be forthcoming for these cases, as well.


Example Results Obtained using Slicer

Example TBI results from Slicer

The following PDF contains a presentation prepared by Dr. Guido Gerig which showcases some example results on the above TBI data sets obtained using existing and newly developed Slicer processing modules.


Engineering Plans for the UCLA Driving Biological Project on Traumatic Brain Injury

The emphasis in this DBP is placed on the feasibility of subject-specific analysis, as opposed to population-based averaging, to examine the influence of TBI on time-dependent alteration of gray and white matter integrity with accompanying change in clinical outcome variables to be used in subsequent TBI assessment.

Specific Aims

This DBP seeks to:

1. Develop end-to-end processing approaches using the NA-MIC Kit to investigate alterations in cortical thickness, and subsequent ventricular and white matter changes in patients with TBI and in age-matched controls. Image processing will include segmentation of lesions, hemorrhage, edema, and other pathology relevant to TBI. Longitudinal changes will be assessed by registration and joint segmentation of baseline and follow-up data.

2. Develop robust workflows for diffusion weighted imaging (e.g. DTI, HARDI) datasets from TBI patients, by using the NA-MIC Kit and Slicer to obtain reliable and robust metrics of white matter pathology and of white matter changes due to therapy and/or recovery.

3. Using the NA-MIC Kit, cross-correlate multimodal metrics of cortical thickness, complexity, ventricular volume, and lesions from structural imaging and white matter fiber integrity from diffusion tensor imaging, with clinical outcome variables, i.e., time since injury, age, gender and other potential factors predictive of recovery.

In Progress / Completed (Reverse Chronological)

TBD

Morphometric Processing

TBD

DTI Processing

TBD

Shape Analysis

TBD

Data

TBD

Outreach

TBD


Investigators

  • John Darrell Van Horn (UCLA) - DBP PI
  • Andrei Irimia (UCLA)
  • Arthur W. Toga (UCLA)
  • David Hovda (UCLA)
  • Paul Vespa (UCLA)
  • Jeffry Alger (UCLA)
  • Guido Gerig (UTAH)
  • Stephen Aylward (Kitware)