DBP2:MIND:Roadmap
Contents
Brain Lesion Analysis in Neuropsychiatric Systemic Lupus Erythematosus
Objective
We would like to create an end-to-end application within NA-MIC Kit allowing individual analysis of white matter lesions. Such a workflow applied to lupus patients is one goals of the MIND DBP. This page describes the technology roadmap for lesion analysis in the NA-MIC Kit. The basic components necessary for this end-to-end application are:
- Registration: co-registration of T1-weighted, T2-weighted, and FLAIR images
- Tissue segmentation: Should be multi-modality, correcting for intensity inhomogeneity and work on non-skull-stripped data.
- Lesion Localization: Each unique lesion should be detacted and anatomical location summarized
- Lesion Load Measurement: Measure volume of each lesion, summarize lesion load by regions
- Tutorial: Documentation will be written for a tutorial and sample data sets will be provided
Roadmap
Starting with several MRI images (weighted-T1, weighted-T2, FLAIR...) we want to obtain lesion maps for each subject. Ultimately, the NA-MIC Kit will provide a workflow for individual and group analysis of lesions. It will be implemented as a set of Slicer3 modules that can be used interactively within the Slicer3 application as well as in batch on a computing cluster using BatchMake.
Next we discuss the main modules and details of current status and development work:
Registration
- ITK has mutual information registration
- BRAINS2 has AIR package wrapped
Lesion segmentation
A number of algorithms for fully or semi-automated lesion analysis will be evaluated on brain images from subjects in a study on lupus erythematosis. These include:
- UNC has a tool called itkEMS Compare Lesion Analysis Tools (marcel)
- EM-segment (sandy wells)
- MedX (commercial package)
- BRAINS2 (magnotta)
- manual tracing by clinically trained rater
Lesion Localization
- Freesurfer has tools for labelling
- BRAINS2
Lesion Load Measurement
- Freesurfer has tools for measurement of labelled lesions
- BRAINS2 has tools for measurement of lesions and regional summaries
Performance characterization and validation
- Data will be collected at both 1.5 and 3T. Data at 1.5T will be obtained with the protocol utilized for current project on lupus at UNM.
- Data at 3T will be obtained with sequences optimized for segmentation by the group at Utah.
- Comparisons will be based on the approach developed by Martin-Fernandez et al.
- The algorithm with the best performance will be incorporated into the NA-MIC kit.