2011 Winter Project Week:longitudinal dti analysis
Key Partners
- Utah: Anuja Sharma, Guido Gerig
- UNC: Martin Styner (Core 1)
- Iowa: Hans Johnson (HD Project)
- UCLA: Jack Van Horn (TBI Project)
Objective
To work on longitudinal DTI data from Traumatic Brain Injury data sets and Huntington's disease datasets. The aim is to analyze changes in diffusion in individual patients' follow up images. In the process, explore the inventory of tools needed (existing within or outside Slicer/ITK) and challenges faced in achieving the same, focusing mainly on DTI registration.
Approach, Plan
Begin with utilizing the existing DTI registration resources for co-registering the images from individual subjects (at varying timepoints: intra-subject). The input images would be scalars derived from the DWI/DTI inputs. For the specific scenarios of TBI and HD, different algorithms/parameter settings for registration would be compared. The aim is to build an atlas using the transformed images and getting transformation fields back to each timepoint image. This would be applied to deform the tensor field and finally come up with a DTI atlas.
Post successful DTI atlas building, we would proceed with tractography followed by arc-length parametrization along the fiber bundles and the use of existing DTI-statistical-analysis framework with along-tract kernel regression. The framework was originally developed by Casey Goodlett and has been modified and updated by the Utah and UNC groups.