Projects:ShapeAnalysisWithOvercompleteWavelets

From NAMIC Wiki
Jump to: navigation, search
Home < Projects:ShapeAnalysisWithOvercompleteWavelets

Back to NA-MIC_Collaborations, MIT Algorithms

In this work, we extend the Euclidean wavelets to the sphere. The resulting over-complete spherical wavelets are invariant to rotation of the parameterization of the original spherical image. We apply the over-complete spherical wavelet to cortical folding development and show significantly consistent results as well as improved sensitivity compared with the previous method of using bi-orthogonal spherical wavelet. In particular, we are able to detect developmental asymmetry in the left and right hemispheres.

Description

Bump on the sphere (first column). When the north pole is right under the bump, both the bi-orthogonal and overcomplete wavelets detect the bump (second column). When the north pole is rotated away from the bump, only the overcomplete wavelet detects the bump (third bump).


[1] P. Yu, P. E. Grant, Y. Qi, X. Han, et al., "Cortical surface shape analysis based on spherical wavelets," IEEE Transaction on Medical Imaging, vol. 26, pp. 582-97, 2007.

[2] D. Nain, S. Haker, A. Bobick, and A. Tannenbaum, "Multiscale 3-d shape representation and segmentation using spherical wavelets," IEEE Transaction on Medical Imaging, vol. 26, pp. 598-618, 2007.

Key Investigator

MIT: B.T. Thomas Yeo, Peng Yu, Wanmei Ou, Ellent Grant, Bruce Fischl, Polina Golland

Publication

B.T.T. Yeo, W. Ou, P. Golland. On the Construction of Invertible Filter Banks on the 2-Sphere. Yeo, Ou and Golland. Accepted to the IEEE Transactions on Image Processing [In Press]

P. Yu, B.T.T. Yeo, P.E. Grant, B. Fischl, P. Golland. Cortical Folding Development Study based on Over-Complete Spherical Wavelets. In Proceedings of MMBIA: IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis, 2007.


NA-MIC Publications Database

Links