RT dose comparison tool for Slicer
Key Investigators
- MGH: Nadya Shusharina, Greg Sharp
Objective
We are developing methods for analyzing dose distributions. The goal is to be able to make quantitative evaluation of different dose distributions in association with RT structures of interest.
Approach, Plan
Our approach for analyzing diffusion tensors is summarized in the IPMI 2007 reference below. The main challenge to this approach is <foo>.
Our plan for the project week is to first try out <bar>,...
Progress
Software for the fiber tracking and statistical analysis along the tracts has been implemented. The statistical methods for diffusion tensors are implemented as ITK code as part of the DTI Software Infrastructure project. The methods have been validated on a repeated scan of a healthy individual. This work has been published as a conference paper (MICCAI 2005) and a journal version (MEDIA 2006). Our recent IPMI 2007 paper includes a nonparametric regression method for analyzing data along a fiber tract.
Delivery Mechanism
This work will be delivered to the NA-MIC Kit as a (please select the appropriate options by noting YES against them below)
- ITK Module
- Slicer Module
- Built-in
- Extension -- commandline
- Extension -- loadable
- Other (Please specify)
References
- Fletcher P, Tao R, Jeong W, Whitaker R. A volumetric approach to quantifying region-to-region white matter connectivity in diffusion tensor MRI. Inf Process Med Imaging. 2007;20:346-358. PMID: 17633712.
- Corouge I, Fletcher P, Joshi S, Gouttard S, Gerig G. Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis. Med Image Anal. 2006 Oct;10(5):786-98. PMID: 16926104.
- Corouge I, Fletcher P, Joshi S, Gilmore J, Gerig G. Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis. Int Conf Med Image Comput Comput Assist Interv. 2005;8(Pt 1):131-9. PMID: 16685838.
- Goodlett C, Corouge I, Jomier M, Gerig G, A Quantitative DTI Fiber Tract Analysis Suite, The Insight Journal, vol. ISC/NAMIC/ MICCAI Workshop on Open-Source Software, 2005, Online publication: http://hdl.handle.net/1926/39 .